Ordenação por Intercalação

De Wiki DAINF
(Diferença entre revisões)
Linha 73: Linha 73:
  
 
14 15 20 50 52 64 77 99
 
14 15 20 50 52 64 77 99
 +
 +
 +
== Implementação em C: ==
 +
{
 +
void mergeSort(int vetor[],int aux[],int tam) {
 +
  m_sort(vetor,aux,0,tam-1);
 +
}
 +
 +
void merge(int vetor[],int aux[],int esq,int meio,int dire) {
 +
 +
  int i,esq_fim,num_elementos,aux_pos;
 +
 +
  esq_fim=meio-1;
 +
  aux_pos=esq;
 +
  num_elementos=dire-esq+1;
 +
 +
  while ((esq<=esq_fim)&&(meio<=dire)) {
 +
 +
    if (vetor[esq]<=vetor[meio]) {
 +
 
 +
      aux[aux_pos]=vetor[esq];
 +
      aux_pos=aux_pos+1;
 +
      esq=esq+1;
 +
    }
 +
    else {
 +
 
 +
      aux[aux_pos]=vetor[meio];
 +
      aux_pos=aux_pos + 1;
 +
      meio=meio+1;
 +
    }
 +
  }
 +
 +
  while (esq<=esq_fim) {
 +
 +
    aux[aux_pos]=vetor[esq];
 +
    esq=esq+1;
 +
    aux_pos=aux_pos+1;
 +
  }
 +
 +
  while (meio<=dire) {
 +
 +
    aux[aux_pos]=vetor[meio];
 +
    meio=meio+1;
 +
    aux_pos=aux_pos+1;
 +
  }
 +
 +
  for (i=0;i<num_elementos;i++) {
 +
 +
    vetor[dire]=aux[dire];
 +
    dire=dire-1;
 +
  }
 +
}
 +
 +
void m_sort(int vetor[],int aux[],int esq,int dire) {
 +
 +
  int meio;
 +
  if (dire>esq) {
 +
      meio=(dire+esq)/ 2;
 +
      m_sort(vetor,aux,esq,meio);
 +
      m_sort(vetor,aux,meio+1,dire);
 +
      merge(vetor,aux,esq,meio+1,dire);
 +
  }
 +
}
 +
}

Edição de 00h20min de 29 de novembro de 2008

Ordenação por intercalação (Merge Sort) é um algoritmo de ordenação muito utilizado em computação, criado pelo matemático húngaro John von Neumann (1903-1957).

Tabela de conteúdo

Princípio de Funcionamento:

O princípio básico de funcionamento do Merge Sort é simples e intuitivo: o algoritmo divide a lista a ser ordenada em várias sublistas, sempre em duas partes, até que as listas restantes contenham apenas um elemento. Após esta divisão o algoritmo faz o caminho inverso, ou seja, ele começa a "remontar" o vetor, porém ordenando os elementos (que estão em menor número) enquanto os vetores maiores são recriados.

Características:

- O Merge Sort necessita de um vetor auxiliar para funcionar, de tamanho igual ao do vetor a ser ordenado, o que constitui uma desvantagem deste algoritmo.

- Sua complexidade é n<math>log[2]</math>n, sendo n o número de elementos que serão ordenados.

- O Merge Sort é considerado como o melhor algoritmo de ordenação já inventado, devido à sua simplicidade e eficiência.

Exemplo

Segue abaixo um exemplo de aplicação do Merge Sort para ordenar um vetor de 8 elementos:

15 99 52 14 50 64 20 77

Divisão em duas partes:

15 99 52 14 - 50 64 20 77

Divisão da primeira parte em duas outras partes:

15 99 - 52 14

Análise do primeiro par:

15- 99

Como 15 é menor do que 99, a ordem é mantida.

Análise do segundo par:

52 -14

Como 52 é maior do que 14, a ordem é invertida:

14 -52

Agora restam dois pares ordenados:

15 99 - 14 52

O algoritmo agora compara o menor valor de cada um dos dois vetores:

15 -14

Como 14 é menor do que 15, esse valor será o primeiro da lista de 4 elementos:

14 X X X

Compara-se 15 com o outro elemento do segundo vetor. Como 15 é menor do que 52, 15 ocupará segunda posição:

14 15 X X

Agora simplesmente comparam-se os dois elementos restantes. 99 é maior do que 52, logo 52 ocupará a terceira posição, e 99 a quarta posição neste vetor de 4 elementos:

14 15 52 99

O processo é repetido de forma idêntica para a outra primeira metade do vetor inicial, que apresentará a seguinte configuração:

20 50 64 77

Neste ponto tem-se dois vetores ordenados:

14 15 52 99 - 20 50 64 77

O próximo e último passo é fazer a fusão destes dois vetores, de forma similar àquela já feita, comparando o menor elemento de cada um dos dois vetores e posicionando o menor elemento ordenadamente na lista original.

Feito este processo, o resultado final será:

14 15 20 50 52 64 77 99


Implementação em C:

{ void mergeSort(int vetor[],int aux[],int tam) {

  m_sort(vetor,aux,0,tam-1);

}

void merge(int vetor[],int aux[],int esq,int meio,int dire) {

  int i,esq_fim,num_elementos,aux_pos;
  esq_fim=meio-1;
  aux_pos=esq;
  num_elementos=dire-esq+1;
  while ((esq<=esq_fim)&&(meio<=dire)) {

   if (vetor[esq]<=vetor[meio]) {
  
     aux[aux_pos]=vetor[esq];
     aux_pos=aux_pos+1;
     esq=esq+1;
   }
   else {
  
     aux[aux_pos]=vetor[meio];
     aux_pos=aux_pos + 1;
     meio=meio+1;
   }
  }
  while (esq<=esq_fim) {

    aux[aux_pos]=vetor[esq];
    esq=esq+1;
    aux_pos=aux_pos+1;
  }
  while (meio<=dire) {

    aux[aux_pos]=vetor[meio];
    meio=meio+1;
    aux_pos=aux_pos+1;
  }
  for (i=0;i<num_elementos;i++) {

    vetor[dire]=aux[dire];
    dire=dire-1;
  }

}

void m_sort(int vetor[],int aux[],int esq,int dire) {

  int meio;
  if (dire>esq) {
      meio=(dire+esq)/ 2;
      m_sort(vetor,aux,esq,meio);
      m_sort(vetor,aux,meio+1,dire);
      merge(vetor,aux,esq,meio+1,dire);
  }

} }

Ferramentas pessoais