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Abstract—Participatory sensor networks (PSNs) regards
smartphone users as consumers as well as active producers
of data. A sensing layer represents a type of data, coming
from a given source of data, such as web services, traditional
wireless sensor networks, and PSNs. In this work, we show the
usefulness and potential of having sensing layers in PSNs. We
also show how we can formalize the concept of sensing layers
in participatory sensor networks. Furthermore, we demonstrate
how to derive and create new applications and services that are
not promptly available from different sensing layers, opening up
very interesting research opportunities.

I. INTRODUCTION

In the last years, there has been a dramatic evolution of
mobile phones that has trigged new ways of how we use
these devices. From simple phone calls in the past, today
the mobile phone is the main source of information storing
our favorite songs and videos. Participatory sensor networks
regards mobile phone users not only as consumers, but also
as active producers of data using sensors attached to mobile
phones, enabling a new and powerful source of data.

In this scenario, a sensing layer represents data, with the
corresponding attributes, from a given source of data. The data
represented by sensing layers have to come from a source
that can be considered a sensor. Examples of data sources
are web services, such as weather condition provided by
“The Weather Channel”1; traditional wireless sensor networks;
income census; and participatory sensor networks (PSN) [1].
In these examples the sensors are web service of The Weather
Channel; physical sensors in a WSN; census of a city; and user
& mobile devices in a PSN. In this context, the applications
or organizations provide a data stream, with very different
throughput. The census sensing, for instance, may be slow,
e.g., data sharing every four years. These examples help
to illustrate the ubiquity and diversity of data that may be
available. This universe of “ubiquitous data” may be complex
to understand and work with, opening up good opportunities
for research studies.

Given that, we could have, for example, four different layers
for a city: Traffic alerts layer provides traffic conditions in
certain locations, such as traffic jam or accident (obtained,
for example, from Waze or Bing Maps); Check-ins layer
provides category of a certain place, such as school or pub
(obtained for example, from Foursquare2); Weather condi-
tion layer provides climate conditions observed in a certain
location, such as windy or rainy (obtained, for example, from
Weddar3 or The Weather Channel); and Pictures of places
layer provides photos of a certain place, such as a monument

1http://www.weather.com.
2http://www.foursquare.com.
3http://www.weddar.com.

(obtained, for example, from Instagram4). Each observation (at
each layer) has the following attributes associated with it: time
(when the observation occurred), space (geographic location),
contributor sensor (e.g., user u) and specific data from a layer
(specialty data). Note that this description illustrates two types
of sensors: companies providing data through web services;
and users sharing real-time data with their portable devices.
Other layers could be obtained by other types of source of
data, such as traffic condition provided by Bing Maps, census
data, or even be derived from one or more layers, as will be
exemplified latter.

We discuss the concept of sensing layers for participatory
sensor networks, most of the time, because this is an emerging
source of data with important characteristics, such as (near)
real time and very large scalability [1]. Due to these special
characteristics, the use of PSNs as sensing layers simultane-
ously with other layers, even derived from other sources, may
bring new information about city dynamics and urban social
behavior, which could enable the design of more sophisticate
services (as discussed later). All the concepts discussed in
this study can be used for other data sources associated to
a predefined geographical region.

The main goal of this work is to formalize the concept of
sensing layers in participatory sensor networks, and show how
we can design sophisticated applications from different sensing
layers. We demonstrate an application for identification of
sights and another to perform economic-cultural analysis of
regions, opening up very interesting research opportunities.

This work is organized as follows. Section II discusses
the different aspects of sensing layers. Section III presents
the related work. Section IV describes how we can process
different sensing layers. Section V presents the design of
applications based on sensing layers. Finally, Section VI
presents the final remarks and future work.

II. SENSING LAYERS

A sensing layer consists of data describing specific aspects
of a geographical location. As shown in Figure 1 by a box
labeled “big raw data”, these data should be collected (e.g.,
using an API) and processed, which also includes analysis and
data standardization. The last step is the data storage. These
steps do not include the extraction of context (or knowledge)
from the obtained data, but organize them [2]. However,
data of sensing layers could be used for context inference,
generating new information.

To illustrate these processes, consider data from a PSN
derived from Foursquare. In Foursquare, users can, among
other activities, perform check-ins at locations and leave tips

4http://www.instagram.com.



Fig. 1. Overview of participatory sensor networks with the concept of sensing
layers.

on visited places. From these data, we can define at least two
layers, namely: check-ins, containing the check-ins performed
by users (check-ins can be used to discover popular places,
for example), and tips of places, containing tips, such as
“this restaurant has amazing food”, provided by users about
certain places. The creation of layers, as shown in Figure 1,
depends on specific operations for each system. In the case of
Foursquare check-ins, a possible way to get them is through
Twitter. This means that we have to collect, analyze, and
process tweets. The coding of tools to perform those steps
varies according to the system or application. Next, we must
define a structure to represent and store the data of interest
associated with a given place where it was shared, thus
representing a layer. Each data in a layer has the following
attributes:

t: time interval when the data was created;
a: location (e.g, GPS coordinates, neighborhood area)

where the data was generated. We represent all
locations by an area. Even if the data is referred by
a GPS coordinate it is error prone. For this reason
it is interesting to consider an area for this point,
for example, a circle with radius x, from the GPS
coordinate;

s: specialty data;
u: one or more IDs of user(s) who generated the data;

Each layer has also a variable h, which indicates the status
of the layer, where h = 0|1, representing the inactive and
active states, respectively. The list below represents some
examples of layers that are currently available:

1) check-ins (example of source: Foursquare);
2) tips of locations (example of source: Foursquare);
3) traffic alerts (example of source: Waze);
4) pictures of places (example of source: Instagram);
5) average income per area (example of source: census);
6) weather condition (example of source: The Weather

Channel);
7) noise level (example of source: NoiseTube.net).

A. Usefulness of Sensing Layers

The processing of a set of sensing layers may enable a
large-scale study of each monitored aspect in (near) real time,
and provides historical data on patterns observed over long
periods. Sensing layers can be applied to several contexts of
urban computing, for example, helping to better understand
the dynamics of cities and urban behavior in different regions
of the world, and respond quickly to unexpected changes.

The use of sensing layers currently in the literature is
commonly performed independently, i.e., there is no joint
analysis. The individual use of a sensing layer can still be very
useful. For instance, using a sensing layer containing traffic
information may enable real-time identification of highways
with accidents and potholes, whose detection is difficult with

traditional sensors, but it becomes more feasible when users
participate in the sensing process. Such detection opens op-
portunities for various services, such as assist smart cars in
the correct identification of problems on the road.

Despite the usefulness of using single layers only, services
based on just one layer might lack of complementary data.
For example, Google Flu Trends5, a service based on Google
queries, is a type of sensing layer. Very recently, a group of
respected social scientists reported that Google Flu Trends not
only wildly overestimated the number of flu cases in the U.S.
in the 2012-13 flu season, but has also consistently overshot in
the last few years [3]. According to them, the problem might
be because Google Flu Trends is not using complementary
information in their service. Indeed, the analysis reported in [3]
shows that combining Google Flu Trends with CDC6 data may
work best. Seems that the way to save this interesting service
is using multiple layers, even Matt Mohebbi, co-inventor of
Google Flu Trends, agrees with that [4].

The joint analysis of multiple sensing layers can also be
extremely useful in building new applications. For example,
we know that a common complaint of inhabitants of large
cities is traffic jam. From this, an application that naturally
emerges is one that has the goal of inferring the causes of
jam, an essential step for addressing the problem. This is not an
easy task to accomplish, and the result may vary from place to
place. However, the joint analysis of different sensing layers of
the city could contribute to build a more robust application. For
example, we could cross-check information provided by the
following layers: traffic alerts, derived from Waze; check-ins,
derived from Foursquare; and pictures of places, derived from
Instagram. The first layer provides near real-time data about
where traffic jams are occurring. The second one provides
data about types of places located in the areas of jams. Having
that, it is possible to better understand the areas of interest (for
example, identifying a commercial area). Finally, by analyzing
the picture of places layer, we can get visual evidence of what
is happening in almost real time near the areas of jams. When
analyzing data from these three layers together, we can detect,
for example, cars blocking intersections, and infer the possible
causes of them. Obviously, other layers may also be used, such
as the weather condition, layer derived from systems such as
Weddar or other traffic condition layer provide, for instance,
by Bing Maps7.

B. A Formal Model for Sensing Layers

Let U = {u1, u2...un} represent a set of sensors (users &
mobile device, WSN sensors, etc.), and let P = {p1, p2, ...pn}
represent a set of sensing systems (e.g., WSNs or PSNs).
Recall that for simplicity throughout the text the descriptions
of concepts are mainly based on PSNs, but the concepts applies
for other sensing processes as well. In fact, an application con-
sidering also other source of data, besides PSN, is illustrated
in Section V-B.

Each user ui ∈ U can share unlimited data on any PSN
pk ∈ P . Each j-th data shared d

pk

j into a PSN pk has the

form d
pk

j = 〈t,m〉, where t refers to a timestamp when user
ui has shared data in pk, and m is a tuple containing attributes
of the shared data. The tuple m is composed of the attributes

5http://www.google.org/flutrends.
6Centers for Disease Control and Prevention - https://data.cdc.gov/.
7www.bing.com/maps.



Attributes (m)
Timestamp (t) Area (a) User (u) Specialty data (s)

T1 a1 1 “Times square”
T1 a1 2 “Times square”
T2 a2 1 “Fifth Av.”
T3 a4 1 “Statue of Liberty”

(a) Foursquare PSN

Attributes (m)
Timestamp (t) Area (a) User (u) Specialty data (s)

T1 a1 3 “Traffic Jam”
T2 a2 2 “Accident”
T2 a3 3 “Police control”

(b) Waze PSN

Attributes (m)
Timestamp (t) Area (a) User (u) Specialty data (s)

T1 a1 3 “photo data”
T3 a4 1 “photo data”

(c) Instagram PSN

TABLE I
DATA STREAM DESCRIBING USERS ACTIVITY IN THREE DIFFERENT PSNS:

FOURSQUARE, WAZE, AND INSTAGRAM.

present in all sensing layers data, in this case m = (a, u, s),
where a is the area of the location where the data was shared,
s is the specialty data, and u refers to the user ui ∈ U who
shared the data.

The data shared in pk ∈ P can be viewed as a data stream
Bpk . We define that a data stream Bpk consists of all n data
shared by users U in a PSN pk in a given time. Thus, Bpk =
〈dpk

1 , d
pk

2 , ..., dpk
n 〉, and Bpk represents a sensing layer rpk

.
Table I shows examples of data present in sensing layers that
have been shared in the three PSNs p1, p2, and p3, illustrated in
Figure 2, which represents three users sharing data in different
PSNs, p1 (red cloud), p2 (green cloud) and p3 (orange cloud)
at three different time intervals (T 1, T 2 and T 3). Note that
data in the same stream can have the same time8, since they
may have been shared by multiple users simultaneously.

One way to work with sensing layers is to represent them in
the same structure, what we call here work plan, containing
one or more layers. This work plan represents the resulting
plan composed by data combined after applying appropriate
algorithms to the corresponding layers we are interested in.
How to perform this combination depends on the functionality
of the layer(s) that it captures. The abstraction used to repre-
sent a combination of data from one or more layers is a data
dictionary M , which is a collection of pairs {key : value}.
This structure was chosen because of its simplicity, which
helps to ease the concepts understanding. Keep in mind that
other structures could be used, as long as they respect the
principles represented here.

We define that the operation responsible for the work plan
creation is called COMBINATION (F , relation()),
where F is a subset of B = {Bp1 , Bp2 , ..., Bpn}, or F ⊆ B,
and relation() is a function that defines the relationship
between data from the streams Bpk contained in F . The
function relation() defines the keys of the work plan M ,
and the data that these keys refer to, which are other ob-
servations of the data d

pk

i not used as key. The operation

8This model faces the clock synchronization problem. Therefore, “same
time” means close times accepted to be considered equivalent.

Fig. 2. Illustration of sharing data in three PSNs throughout the time,
resulting in layers.

COMBINATION results in the work plan M .

To demonstrate the operation COMBINATION , we
illustrate here two types of relations used to combine data:
(1) by location and (2) by users (sensors). To demonstrate a
work plan containing combined data by location, consider the
activity shown in Figure 2. In this case, F = {Bp1 , Bp2 , Bp3}.
The work plan M1 represents this activity, and it is illustrated
in Figure 3. Observe that the work plan represents data that
have been shared across all considered layers. The color of
the symbol representing a given data d′i indicates from which
layer it was extracted. The data shared in the same location are
grouped and indexed by the key that represents the location. In
the work plan M1, one key ki is represented by ai, which is a
unique area among all areas of all data shared in the considered

layers: r1, r2, and r3. The d
rj′

i refers to the observations not
used as key of the data di from the layer rj , or 〈t, u, s〉.
Thus, each unique areas become a key in work plan M1.
Work plan M1, as described, presents the following structure:
M1 = {a1 : {dr1

′

1 , dr1
′

2 , dr2
′

1 , dr3
′

1 }, a2 : {dr1
′

3 , dr2
′

2 }, a3 :
{dr2

′

3 }, a4 : {d
r1′

4 , dr3
′

2 }}.

Fig. 3. Combination by location.

Figure 4 illustrates the combination by user. In this case, a
work plan is build containing keys that represent user ids.
The figure shows the work plan M2, which was created
considering the activities shown in Figure 2. The content of
the work plan is: M2 = {u1 : {dr1

′

1 , dr1
′

3 , dr1
′

4 , dr3
′

2 }, u2 :
{dr1

′

2 , dr2
′

2 }, u3 : {dr2
′

1 , dr3
′

1 , dr2
′

3 }}. As we can see, each
unique user has become a key in M2. This work plan grouped
all attributes by the same user in different layers.

Fig. 4. Combination by users.



C. Issues of Data from Multiple Layers

There are issues when dealing with data from several
layers simultaneously. For instance, in order to perform data
combination, such as by location or user, as exemplified, we
have to make sure that the data is consistent in all layers. This
is a mandatory condition for correct functioning.

Consider that we want to combine two layers A and B by
locations. The format of data location in Layer A is expressed
as latitude and longitude, and as street address in Layer B.
One way to solve this inconsistency is performing a geocoding
process, using, for example, the Yahoo! geocoding tool9. In
this way the street address will be transformed in a geographic
coordinate (latitude and longitude).

Another issue that might happen when combining data by
location is regarding to areas that overlap each other. How to
define a key in this case? One possibility is consider several
keys, one for the intersection between those areas, and one
or two10 as the area(s) not overlapped. Another option is to
define just one key, this might be interesting when one area is
inside another, so the key becomes the bigger area.

The combination by users is specially an issue when our
sensor is an user, as in PSNs, because the same user may
participate in different layers. Let’s suppose we want to
combine data by users using the check-ins layer (obtained from
Foursquare) and the picture of places layer (obtained from
Instagram). Since we are dealing with independent systems,
users (sensors) have different identification. One way to try to
bypass this issue is verifying other networks in order to match
the user ID of one layer in another. For example, users of
Foursquare and Instagram tend to be also users of Twitter [5].
In this way, the key in the combination process could be the
twitter ID.

Note that if the combination by user desired is between a
PSN layer and other layers that doesn’t have users as sensors,
such as WSNs, the inconsistency does not exist, because every
sensor has its unique ID. Although it is necessary to evaluate
if a combination by users (sensors) between those layers lead
to the desired information.

Another issue is that different layers might refer to data
valid for different interval of times. This is natural because
some data sources provides near real time data, others not. For
example, an alert in a Waze PSN refers to a traffic situation
that may not exist five minutes later. However, a census data
usually is valid for a big interval of time, months or years,
until the next census is released. We have to be aware of all
those issues when designing new applications and define a
way to treat them.

There might be other issues. For example, issues related
to the volume of data. If we do not have significant data
for a certain layer, its utilization may not lead to the correct
information extraction. Different data sources may present
different characteristics for this issue. For instance, in a PSN
many factors influence the volume of data, for example,
geographical, cultural and economical aspects. The granularity
of areas may also influence other data sources. If we consider,
for example, data from WSN as a layer we may not have data
for an entire metropolis, because of scalability problem.

In summary, note the importance of a characterization
processes, as we shown in [1]. We have to know the properties

9https://developer.yahoo.com/boss/geo.
10If one area is not completely inside another.

of the layers we want to use, in order to verify if their simul-
taneous use may lead to the intended information extraction.
The relation() informed to the COMBINATION en-
capsulates the solution chosen for dealing with heterogeneous
data, which is application dependent. If there is no solution
to eliminate the inconsistency between data from two layers,
then they can not be used together.

III. RELATED WORK

The use of layered (multi-layer) models to extract new
information or design new applications is not new [6], [7], [8].
Very recent studies focused on a particular type of multi-layer
network, the multiplex, where each agent can be networked in
different ways, and with different intensity, on several multiple
layers simultaneously. This model is useful, for example, to
study links that the same user has in different social networks
(layers), for instance, to better understand the information
spreading or to measure social tie strength (the case studied
by Hristova et al. [7]). Another example is the study of
transportation in a city. The network of bus routes and stops
(layer 1) is different from a subway network (layer 2) in
the same city, but a user can use both networks to reach its
destination [8].

In the same direction, Xin et al. [9] proposed a layered
graph to model to develop routing and interface assignment
algorithms. Laura et al. [10] proposed a layered model for
the Web network, aiming to design a model that resembles
better the complex nature of the Web. A GIS (geographic
information system) is another example, because it often
utilizes a layered model for characterizing and describing our
world. It uses maps to visualize and work with geographic
information in several layers [11]. GIS is related to the ideas
proposed here, in fact, some GIS tools could be used to support
the proposed framework, for example, in the combination
process. Our proposal differ from a simple implementation
of a GIS because it is not driven by jurisdictional (such as
a city), purpose, or application requirements. We focus on
the discussion of a sensing layer framework. Besides that
we envision demonstrate the potential of simultaneous use of
sensing layers derived from PSNs, for the extraction of new
information related to the study of city dynamics and urban
social behavior.

Recently, there is an evident interest in understanding how
users behave across different Web systems [12], [13], [14],
[15], [16], [17]. More related to our proposal, there are studies
that consider different sources of data simultaneously to better
understand the dynamics of cities. For example, Bollen et
al. [18] investigated whether collective mood states derived
from Twitter feeds are correlated to the value of the Down
Jones Industrial Average (DJIA) over time. Ribeiro et al. [19]
correlate data from Foursquare and Instagram with traffic
conditions reported by Bing Maps. Gomide et al. [20] analyzed
how Dengue epidemic is reflected on Twitter. Martani et
al. [21] examine the underlying drivers of energy consumption
through several sensed data. Sagl et al. [22] analyzed the col-
lective human behavior based on mobile data, and correlated
it with meteorological data from weather stations.

In sum, this work differs from all previous studies because:
(i) define the concept of PSNs as sensing layers; (ii) propose
a framework that enables integration of the analysis and
exploration of multiple layers simultaneously; and (iii) present



applications that use the proposed framework and illustrate the
potential of using multiple sensing layers.

IV. PROCESSING SENSING LAYERS

This section discusses how to process one or more sensing
layers. To that end a number of example operations are
proposed. Section IV-A presents examples of such operations
and Section IV-B presents some strategies to process layers
using the proposed operations.

A. Operations

In Section II-B, we illustrate how to represent sensing layers
in a work plan, for example, by location (M1) or users (M2).
The general purpose of work plans is to be basic structures
that can be easily manipulated. Recall that the structure chosen
here to represent a work plan is a data dictionary. Having a
work plan, as the M1 or M2 shown in Figures 3 and 4, we
can apply operations to derive other structures and also extract
new information. The list below provides examples of some
generic operations:

• dGRAPH (directed graph): It expects as input a work
plan M , and the result is a directed graph G = (V,E).
This operation builds a directed graph G = (V,E), where
each key ki in the work plan represents a node vi ∈ V ,
and the data indexed by ki are attributes of vi. An edge
e = (vi, vj) is added depending on the desired analysis,
which is expressed through some specific operations, as
we describe below. Initially, E = ∅. All variables of the
work plan are incorporated in the graph;

• CNG (change): It expects a work plan M , a layer
identification (ID), and a status (0 or 1). It results in
the alteration of the variable h of the informed layer, i.e.,
it changes the status of a layer through the variable h. If
the informed status is 0, then h = 0 and the work plan
are adjusted accordingly, i.e., this particular layer of the
work plan is disabled. The layer disabled can be enabled
again with the same data at the disabling time;

• RESET : It expects a directed or undirected G graph,
and results in a work plan M . It is extracted all the neces-
sary information from the graph to build a corresponding
work plan. All variables of the graph are incorporated in
the work plan;

• dEDGE (directed edges): It expects a directed graph
G resulted from a work plan combined by locations,
and results in a graph G′ containing directed edges. This
operation creates a directed edge from node vi to node
vj if and only if at least one user shared data, in any
layer, in the location represented by the node vj right after
sharing data, also in any layer, in a location represented
by the node vi. The weight of an edge represents the total
number of transitions performed from vi to vj considering
transitions of all users. Note that it is possible to have
more than one transition for the same user;

• DEL (delete): It expects a graph G and an integer t.
The result is a subset graph Gsubset derived from G.
This operation deletes edges ei ∈ E (E is a set of edges
of G), with weight wi < t;

• rdGRAPH (random directed graph): It expects a di-
rected graph G(V,E). The result is a random directed
graph GR(V,ER). The random graph GR is constructed
keeping the same nodes of G and uses the same num-
ber of individual transitions of G. However, instead

of considering the real transition vi → vj performed
by an individual, the operation randomly choose two
nodes to replace vi and vj , simulating random transitions
performed by users;

• MERGE: It expects a work plan M1, a work plan
M2, and a data relation relation(). M1 and M2 have
to be produced following the same data relation, for
example, by locations as explained above in the process
COMBINATION. This operation results in a work plan
Mmerged(V,E) representing the merge of the sensing
layers represented by M1 and M2. This operation merge
information of M1 and M2, respecting the data relation
informed relation().

We can have also specific operations to produce new infor-
mation (which could be represented in a new layer), using one
or more existing layers, such as the following operations:

• fPOIS (find POIs): It expects a work plan M repre-
senting a layer such as check-ins and pictures of places
combined by locations. Other layers might also be used,
but previous verification of feasibility is needed, for
example, data might not be available for the geographical
region of interest. This operation results in a work plan of
a new layer containing popular areas, or points of interest
(POI), based on the number of activities performed on
them. This operation identifies POIs applying the algo-
rithm specified in [23], to select geographic areas;

• fSIGHTS (find sights): It expects a work plan MPOIs

containing POIs. The result is a graph GSIGHTS con-
taining sights. This operation identifies sights from a
work plan MPOISs, where keys are the areas a of POIs
identified in a particular pre-defined geographic region.
This algorithm is described in [23]. More details of this
operation are presented in Section V-A.

We chose specifically those operations because they are
used in the applications presented in the next sections. Note
that other operations can be proposed. For instance, another
operation to create edges differently from dEDGE. This new
operation, called for example uEDGE, could be suitable for
a graph G produced from a work plan combined by users. The
operation uEDGE could create an undirected edge between
vi and vj , if and only if user ui, represented by node vi,
shared data in the same location (layer independent) that user
uj , represented by node vj . The weight of an edge represents
the total number of locations that nodes vi and vj have in
common. Other operations could be designed to add (directed
or undirected) edges with different way to assign weights.

B. Processing Strategies

As shown in the previous section, our framework provides
several operations useful to process sensing layers in several
manners. To give an example of the results we can obtain in
processing sensing layers using those operations, we demon-
strate how to obtain: flow graphs, graphs that map the locations
where the same user shared data, thus capturing the move-
ments or transitions in a geographical area; and also points of
interest and sights. It is particularly interesting to illustrate the
creation of flow graphs because its is a fundamental piece of
some operations, for instance fSIGHTS.

Consider the data sharing of the situation illustrated in
Figure 2. After a certain time, we can process the data in order
to extract knowledge in different ways. Take for instance the



Fig. 5. Illustration of flow graph creation from one single layer, and also
from multiple layers.

Algorithm 1: Generation of a flow graph for one single
layer.

input : work plan M combined by locations
output: flow graph Gflow

r2
that represents data from layer r2

1 M ← M1 ; // M1 is the work plan created previously

2 M ′ ← CNG(M,r1, 0);
3 M ′′ ← CNG(M ′, r3, 0);
4 G← dGRAPH(M ′′);

5 Gflow
r2

← dEDGE(G);

flow graph labeled “flow graph - layer r2”, shown in Figure 5.
The Algorithm 1 describe the steps necessary to generate
this graph, referred to as Gflow

r2
(built from layer r2). In this

algorithm we consider the work plan M1 as explained above
(combined by locations). We initially apply the operation
CNG hiding layers r1 and r3. After that, we have to generate
a directed graph G using dGRAPH and apply the operation
dEDGE in G, obtaining Gflow

r2
. In this case, we have a

flow graph that represents data from a single layer. With this
graph we can extract many valuable information, for example,
regular trajectories in a city.

Another possible analysis is to consider different layers
simultaneously. In Figure 5, the part named the “flow graph
– all layers” shows a graph, which we call G

flow
all . The

Algorithm 2 describes the steps necessary to generate G
flow
all .

This algorithm also consider the work plan M1 created above.
As we can see in the algorithm, in order to obtain G

flow
all we

need to apply the operation dEDGE in G. In the resulting
graph, the nodes represent data shared in the same location at
any layer. Edges connect nodes vi → vj if at least one user
shared data in the location represented by node vj , right after
sharing a data in the location represented by the node vi.

Algorithm 2: Generation of a flow graph for multiple
layers.

input : work plan M combined by locations

output: flow graph G
flow

all
that represents data from multiple layers

1 M ← M1 ; // M1 is the work plan created previously
2 G← dGRAPH(M);

3 G
flow

all
= dEDGE(G);

New information could be obtained by processing data
available from one or more sensing layers. Points of interest
(POI) in a city, identified from data shared in Instagram and
obtained using operation fPOIS, represent an example. To
identify a sight it is necessary the POIs, according to the
operation fSIGHTS. This is demonstrated in Figure 6.

Fig. 6. Illustration of new layers creation from the picture of places layer.

In this figure, the new information obtained is expressed
as new layers. Note that these new layers are represented
in the box labeled “Contextual information”. Basically, new
information generated from other sensing layers are contextual
information. Recall that contextual information might have the
power to influence the data generation. For example, once
users know where are the points of interest they may tend
to share more data in those places instead of others.

V. APPLICATIONS USING THE SENSING LAYERS

FRAMEWORK

In this section, we discuss two applications that illustrate the
potential of the proposed framework for working with sensing
layers, in Sections V-A and V-B.

A. Identification of Sights

We discuss an application that identifies sights considering
multiple layers simultaneously, highlighting the improvements
on the strategy presented in [23], which considers only one
layer. In this new analysis, we consider a Instagram and
a Foursquare dataset, which were collected directly from
Twitter11, since Instagram photos and Foursquare check-ins
are not publicly available by default. Those datasets have the
time of collection in common (11/May/2013 – 25/May/2013).
Each content (photo or check-in) consists of GPS coordinates
(latitude and longitude) and the time when it was shared.

The picture of places layer (r1) is represented by the
Instagram dataset, and the layer check-ins (r2) by Foursquare
dataset. Our goal is to obtain results using both layers. To
that end, we first combine the data by location, producing a
work plan M1. First we want to identify sights for the layer
r1. With that in mind, we disable layer r2 from M1 using
the operation CNG obtaining Mr1 . After that, we apply
fPOIS in Mr1 to generate Mpois

r1
, work plan containing the

POIs. In the resulting work plan Mpois
r1

, the keys are the areas
of the identified POIs. In the scenario illustrated in Figure 6,
we have only two keys for a work plan representing POIs,
represented by Area 1 and Area 2.

Each POI in Mpois
r1

represents a popular area a in a
given geographical region, e.g., a city. Popularity is identified
through the volume of shared data made available by users u.
That is, a POI represents the activity performed by a group
of users u in a time interval t. Note that, the specialty data
s, in this particular case, is the POI area itself. We use the
work plan Mpois

r1
for the extraction of sights with the help of

the operation fSIGHTS. First, the operation fSIGHTS
creates a directed graph (in the example Gpois

r1
), from the

11http://www.twitter.com.
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received work plan (in the example Mpois
r1

), using operation
dGRAPH . Next it maps the flow of users performed
between POIs. For this, it applies the operation dEDGE
in Gpois

r1
obtaining Gpois−flow

r1
. After that, popular transitions

that connect two nodes vi → vj are selected. For that, it
uses the operation DEL in the graph Gpois−flow

r1
using a

parameter t. The parameter t in this case is calculated in the
way presented in [23]. According to the conjecture considered
in the algorithm of the operation fSIGHTS, the popular
transitions selected connects the sights, which are represented
in the graph Gsights

r1
= (V ′, E′). In this graph, nodes vi ∈ V ′

are the areas a of the identified sights.
Next, we identify the sights Gsights

r2
for r2. First, we enable

r2 and disable layer r1 from M1. The next steps are performed
similarly to the way it was presented for r1. After that we
merge the contextual layers containing the sights for layers r1
and r2, M sights

r1
and M sights

r2
, respectively, in the work plan

M
sigths
total . This work plan contains all identified sights, which

are shown by the Figure 7.
The sight indicated by a red arrow (Central Market) was

identified only by Foursquare. Sights pointed by a blue arrow
(Pampulha Church, Pampulha Lake, and leisure Area 2) were
not identified with Foursquare. All sights are very relevant. It
is important to observe the potential for complementary results
using both layers.

B. Economic-Cultural Analysis of Regions

The application described in this section allows various
economic-cultural analyses. In this paper, we focus on two,
which complement previous studies that correlated economic
status with social media data [24]. The objective of the first
analysis is to correlate the general sentiment expressed in the
tips for all locations in a given census tract ai (geographic
region defined for the purpose of taking a census), with the
median income of the inhabitants of this tract. On the other
hand, the aim of the second analysis is to study the movement
of users in the considered tracts, taking into account the typical
income of these tracts. This second analysis aims to identify
possible social segregation in a city.

To illustrate this application, we consider two datasets
derived from Foursquare and one derived from the census
of NY. The first, named CHECKINS-NY, consists of 34,677
check-ins performed in New York City, in a week of April
2012. CHECKINS-NY is a subset of a Foursquare dataset

Group Mean Sent. (std) (+3,+4)% (+1,+2)% (0)% (-1,-2)% (-3,-4)%

<25000 0,46 (0,67) 0 73,08 21,15 5,77 0
>25000 and <50000 0,73 (0,63) 1,23 84,31 12,92 1,23 0,31
>50000 and <75000 0,81 (0,46) 0,40 93,28 5,93 0,39 0
>75000 and <100000 0,9 (0,36) 0 96,97 3,03 0 0

>100000 0,87 (0,28) 0,96 98,08 0,96 0 0

TABLE II
GENERAL SENTIMENT PER GROUPS OF TRACTS

used in [1]. The second dataset, named TIPS-NY, contains
all the tips contributed by users up to January 2013 in all
unique locations of the dataset CHECKINS-NY. The tips were
collected through the Foursquare API. Each tip contains a
location, a user ID, a time, and the textual content of the tip.
We consider only tips in English. We define that a tip is in the
English language if at least half of the words of the tip is listed
in a dictionary containing key words in English. This resulted
in 157,197 tips (2,531 discarded). The last dataset, named
CENSUS-NY, contains information of the census of New York
City, and it refer to the 2006-2010 American Community
Survey. The area of each tract is pre-defined by the census of
New York. It contains, among other information, the median
income per tract (information we are interested here).

The TIPS-NY dataset is used to represent a sensing layer
called tips of locations (r1). The layer r1 is composed of a
data stream Bi. Each data stream has the form: 〈t, (a, u, s)〉.
An example of the specialty data s of this layer is: “This place
is awesome, I recommend the burger.”. The income layer (r2),
derived from CENSUS-NY, is composed of a dataset dj for
different tracts of New York. Each specialty data in dj has
the median income of the inhabitants of a particular tract. The
form of d1 is t =2006-2010, a = [area of Tract 1], u = “USA
Census”, s = “median income in US$ for the Tract 1”〉. Note
that, this is an example of layer obtained from a different
source than PSNs. This illustrates the use of other sources of
data about predefined geographical regions.

For the first analysis we combine the data from the layers
r1 and r2. The chosen method is the combination by location,
method described in Section II-B. This combination process
consider the keys as the areas of the tracts. Each key ki
combines, among other data, the tips of all the places that
are located within the area of a tract, and the median income
information of the tract. The combination process results in a
work plan M1.

Thus, we use M1 to calculate the general sentiment about all
locations in each tract. For this analysis, we used the program
SentiStrength [25]12, to classify the sentiment expressed in
the tips. SentiStrength computes the sentiment of a tip in a
scale from −4 (strongly negative) to 4 (strongly positive), 0
indicates a neutral sentiment. This program is applied to each
tip and then combined by location, and finally by tract.

Then we calculate the average sentiment for all locations in
a given tract. Next, we group the tracts in five income groups:
less than US$25,000; between US$25,000 and US$50,000;
between US$50,000 and US$75,000; between US$75,000 and
US$100,000; and over US$100,000. Finally, we calculate the
average value of sentiment for each of the five income groups,
considering all tracts that belong to each group.

Table II presents this result, and also for each income group,
the percentage of average sentiment that falls in one of five
range of sentiment: (+3, +4), (+1, +2), (0), (−1, −2), and (−3,
−4). As we can observe, the result suggests that poor tracts

12We used the tool IFeel [26] to help in the selection of this sentiment
analysis program.



tend to have the worst sentiment expressed by users. This may
be associated with low quality services in these tracts. With
the tract income increasing, opinions tend to be more positive.
Although the average sentiment for the richest tracts group
(over US$100,000) is slightly lower than the second richest
(between US$75,000 and US$100,000), this group still has a
larger number of positive tips compared to all other groups,
and does not have negative tips. Note the potential of this
analysis for social studies, e.g., for the study of inequalities in
the quality of services in cities.

For the second analysis the dataset CHECKINS-NY is used
to represent a sensing layer called check-ins (r3). We combine
layers r2 (as defined above) and r3 by location on the work
plan M2. We then create a graph G2, and use it to generate
a flow graph G

flow
2 , where the edges are the transitions

performed by the same user in different tracts (nodes in the
graph). We exclude loops, i.e., visits from the same user on

the same tract, generating then G
flow′

2 . To gather evidence of
the existence of segregation, we study the assortativity related

to the median income by tract in G
flow′

2 . This is a way to try
to observe the existence of segregation.

The assortativity measures the similarity of connections
in the network relative to a particular attribute, and ranges
from −1 to +1 [27]. In an assortative network (with positive
assortativity), vertices with similar values for a given attribute
(e.g., the same income) tend to be connected (be similar)
to each other, whereas in a disassortative network (negative
assortativity), the opposite happens. All tracts were associated
with a class based on the median income of the tract: Class
A for median incomes up to US$75,000; and Class B for
higher median incomes. The assortativity considering these

two classes as attributes of G
flow′

2 is 0.14. Thus, the network
for this attribute is assortative, indicating a trace of segregation,
i.e., users tend to share content (or attend) in tracts that have
the same class of income.

After that, we create ten random graphs GRi(V,ERi), where
i = 1, . . . , 10, using the operation rdGRAPH . For each
graph GRi is also randomly associated a class of a node, A or
B. The number of nodes of class A and B are also consistent
with the one observed in G

flow′

2 . After that, we calculate the
assortativity for all random graphs GR1..10. The assortativity
for all graphs, with 95% confidence level, are in the range is:
[−0.0084,−0.0014]. As we can see, these random networks
do not indicate segregation. Obviously, in order to draw any
conclusion in this sense, a more detailed investigation is
needed. However, this result shows the potential for joint
analysis of multiple layers.

Note also the potential of considering the same layers
to generate a work plan M3 combined by users. Besides
identifying users’ preferences, we can also try to infer their
social class studying the income of the tracts that the user
visits. This can be useful for social studies, and for more
effective advertising.

VI. FINAL REMARKS

This work formalizes the concept of sensing layers in
participatory sensor networks, and shows how we can design
sophisticated applications from different sensing layers. This
study also presented applications that illustrate the potential
of sensing layers.

Many other applications could be proposed. For example,
in any city is likely to find many places where people perform

more often a particular activity, for example an area of bars
and restaurants where people meet to socialize. These locations
could be identified with the help of the check-ins layer. The
information provided by other layers could help users choosing
the best areas of interest at the moment. For example, a user
could use the information provided by the traffic alerts layer
to identify among all the options, the area with the lowest
number of traffic problems at the time, and use the picture of
places layer to view the style of the establishments in those
areas and the people who frequent them.

As future work, we plan to design more sophisticated
applications that show the potential of sensing layers and
consider other aspects in those layers that could explore such
data mining.
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