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1. INTRODUCTION

Smart phones [Miller 2012] are taking center stage as the most widely adopted and
ubiquitous computing device [Lane et al. 2010]. Besides their computing power, smart
phones are currently available with an increasingly rich set of embedded sensors, such
as GPS, accelerometer, microphone, camera, and gyroscope [Lane et al. 2010], which15

enable the sensing of vast areas, as people carrying their portable devices share data
about their locations and opinions, and collaborate among themselves. Systems that
enable data sensing in this way are named participatory sensing systems (PSSs) [Silva
et al. 2013b; Burke et al. 2006].
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Many PSSs have already been deployed [Reddy et al. 2010; Silva et al. 2013b]. Exam-
ples are location sharing services, such as Foursquare1, which are becoming increas-
ingly popular. Indeed, Foursquare, created in 2009, has reportedly already passed the
mark of 40 million registered users worldwide. On Foursquare, users may share their
current locations by checking in at different venues, which are grouped into a set of5

pre-defined venue categories (e.g., restaurants). PSSs are often built on top of par-
ticipatory sensor networks (PSNs). In a PSN, nodes are autonomous mobile entities
(users) capable of sensing the environment they are inserted in2.
PSNs derived from systems like Foursquare offer invaluable opportunities for the

study of human social networks and human behavior “in vivo”, in a natural context10

outside laboratories, as users have their daily routines tracked down and digitally
recorded. In particular, the combination of web-scale distributed sensing and ubiqui-
tous connectivity associated with this type of system offers an unprecedented oppor-
tunity to measure large scale city dynamics at reasonably low cost, since it enables
an interface of the digital world with the physical world. For example, data shared on15

Foursquare allows the inference of where the currently popular restaurant areas are
located in New York City and in Tokyo, as well as where people usually go to after
having dinner in these two cities.
Most importantly, we note that people dynamics may change unpredictably in re-

sponse to events that affect the urban areas where they live, such as an extreme20

weather conditions, construction work on major roads, or the opening of a new trendy
bar/restaurant in a previously quiet region. Tracking such changes and their implica-
tions on the city dynamics might be time consuming and quite costly if one relies on
traditional methods applied in social sciences (i.e., surveys). Instead, data shared in
PSNs may reflect these changes in human behavior patterns in near real time, at a25

much lower cost. More broadly, PSNs enable cross-city social studies that investigate
similarities and differences across cities, at a much lower cost.
In this article, we aim at investigating how we can use participatory sensor net-

works, specifically one derived from Foursquare, to better understand the human dy-
namics of different cities. In this direction, our main contributions are:30

—A visualization technique, called City Image, that provides a summary of the dynam-
ics of a city and the routines of its citizens. The City Image is based on transition
graphs, which map people’s movements between different location categories. We ap-
ply this technique to different cities around the world to show that this compact
representation is able to capture striking features of these cities.35

—We demonstrate how the City Image technique can be used to identify similarities
and differences of human dynamics across cities. Specifically, we propose a method-
ology to cluster cities according to the routines of their citizens. The core of this
methodology is to measure the distance between pairs of cities using their City Image
representations.40

—Finally, we analyze structural properties, notably centrality metrics, of the transi-
tion graphs built for different cities, considering transitions at the granularity of
specific venues. We show that these metrics complement the City Image technique,
contributing to provide a deeper understanding of the city dynamics and the routines
of its citizens.45

The rest of this article is organized as follows. Section 2 presents the related work.
Section 3 briefly discusses the concept of PSN, whereas Section 4 presents some funda-
mental characteristics of the PSN derived from Foursquare. Section 5 introduces our

1http://www.foursquare.com
2The sensing activity depends on whether they want to participate in the sensing process [Silva et al. 2013b].
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City Image visualization technique. Section 6 shows how the City Image technique
can be used for a quantitative comparison of different cities. Section 7 discusses how
the City Image technique can be complemented by the analysis of centrality metrics
of transition graphs. Finally, Section 8 presents the concluding remarks and future
work.5

2. RELATED WORK

Several studies have analyzed the spatial properties of data shared on location sharing
services such as Foursquare. For example, Cheng et al. [Cheng et al. 2011] analyzed 22
million check-ins posted on more than 1,200 applications (Foursquare is responsible for
53.5% of the total). They observed that users follow simple and reproducible patterns,10

and also that social status as well as geographic and economic factors are coupled
with mobility. Scellato et al. [Scellato et al. 2011] studied the spatial properties of the
social networks connecting users of Foursquare, Gowalla, and Brightkite. Among the
results, the authors showed that 40% of the social links happen within 100 km of a
location assigned as the “home” of the user.15

In the same direction, Cho et al. [Cho et al. 2011] investigated patterns of human
mobility in three datasets, including check-ins collected from location sharing services
and cellphone location data. They were particularly interested in determining how
often and how far users travel, as well as how social ties may impact such movements.
They observed that short-ranged travel is spatially and temporally periodic and is not20

affected by the social network structure, while long-distance travel is more influenced
by social network ties. Concerning the places people go, Noulas et al. [Noulas et al.
2011a] showed that the distribution of check-ins at venues presents a heavy-tailed and
power-law behavior. They also observed the presence of spatio-temporal patterns in
Foursquare, showing considerable distinct patterns between weekdays and weekends.25

Using data collected from Foursquare, Chlo et al. [Brown et al. 2013] investigated
social and spatial properties of social networks in cities, and proposed a model for a
place-based social network.
More closely related to our work, Doytsher et al. [Doytsher et al. 2012] proposed

an application that handles a social-spatial network consisting of a social network,30

a spatial network, and life patterns that connect users of the social network to the
locations where they regularly go. In the application, users can create queries such
as “friends of Marge who buy at the same grocery store that she does”, using a new
query language. This work highlights the fact that data recorded by location sharing
services contains an extensive amount of information about people’s routines, which35

can be explored to build valuable applications.
Concerning the understanding of the dynamics of cities and the routines of their

inhabitants, Cranshaw et al. [Cranshaw et al. 2012] presented a model to extract dis-
tinct regions of a city that reflect collective activity patterns. The idea is to expose
the dynamic nature of local urban areas considering spatial and social proximities of40

venues, derived from the geographic coordinates and the distribution of user check-ins,
respectively. Similarly, Zhang et al. [Zhang et al. 2013] also investigated the identifi-
cation of neighborhood boundaries using a dataset from Foursquare, while Noulas et
al. [Noulas et al. 2011b] proposed an approach to classify areas and users of a city by
using venues’ categories of Foursquare.45

Public transportation data has also been used to study city dynamics. For example,
Lathia et al. [Lathia et al. 2012] used a dataset from public transportation to show that
urbanmobility is a viable way to better understand dynamics of urban life. The authors
correlated the mobility of London inhabitants using the public transportation system
with the census-based indexes of welfare in different areas of the city. The authors50

obtained interesting results, such as that socially-deprived communities in London

ACM Transactions on Internet Technology, Vol. 9, No. 4, Article 1, Publication date: October 2013.



1:4 T. H. Silva et al.

tend to be visited more than wealthy ones. Moreover, Froehlich et al. [Froehlich et al.
2009] used a dataset of a shared bicycling system to show the underlying temporal and
spatial dynamics of a city. They demonstrated that simple predictive models are able
to predict bicycle station usage with high accuracy.
The studies by Santi and Oliver [Phithakkitnukoon and Oliver 2011] and Noulas et5

al. [Noulas et al. 2011a] are very related to our present effort. In both cases, the au-
thors analyzed check-ins extracted from Foursquare grouped by the venue categories
to better understand urban social behavior. Santi and Oliver [Phithakkitnukoon and
Oliver 2011] analyzed the social activity in London, Paris, and New York. Among other
findings, they verified that places from Food and Nightlife categories are the strongest10

social hubs across the three cities. Noulas et al. [Noulas et al. 2011a] analyzed the most
common transitions between venue categories around the world, aiming at identifying
sequential activity transitions.
We also have previously investigated the dynamics across cities [Silva et al. 2012].

This prior work differs from those other previous efforts by two key aspects. First, we15

proposed a compact technique to visualize and represent city dynamics that captures
people’s habits and routines. Second, we assumed that social behavior highly depends
on cultural and geographical factors and, unlike [Noulas et al. 2011a], we characterize
the dynamics of a city based on the movement patterns (i.e., transitions) of their citi-
zens. Thus, each city has transitions that are more and less likely to occur. The present20

study greatly builds upon our previous work [Silva et al. 2012] in three directions.
First, we here provide a much more detailed explanation of the City Image technique,
and validate its application on a much larger number of cities (30 in total). We also
show how to use the City Image technique to perform a quantitative comparison of
multiple cities, which is illustrated by clustering cities based on their similarities in25

terms of transitions. To that end, we propose a city clustering methodology, and apply
it to the 30 analyzed cities, considering different periods of time. Finally, we comple-
ment our City Image technique, which is based on transitions between location cate-
gories, by proposing the analysis of centrality metrics of the transition network built
by mapping people’s movement between specific locations in a city. Our present effort30

also builds and complements other prior studies [Silva et al. 2013b; 2013a]. Whereas in
these prior studies, our goal was to analyze the challenges and opportunies of studying
city dynamics using participatory sensing by characterizing the spatial and temporal
coverage of PSNs derived from different location-based applications, we here aim at
proposing and exploring a new technique to visualize the dynamics of a city based on35

PSN data.
The study performed by Karamshuk et al. [Karamshuk et al. 2013] is somewhat

related to the last extension. The authors investigated the problem of finding the most
promising areas to open a store in New York city, using a dataset from Foursquare.
To that end, they evaluated the predictive power of several machine learning features.40

Unlike in [Karamshuk et al. 2013], our focus is not on predicting the best spot to place
a store, but rather on studying people’s movements across existing locations, aiming
at, for example, identifying strategic partners to make an advertising in order to direct
the flow of users between two independent stores.

3. PARTICIPATORY SENSOR NETWORKS45

Participatory sensing is the process where humans actively use mobile devices and
cloud computing services to share local environmental data, such as their current lo-
cations and pictures they take [Burke et al. 2006]. It differs from opportunistic sens-
ing [Lane et al. 2010] mainly by the user participation, which is key to the former and
marginal to the latter. In this work, we consider that a fundamental aspect of partici-50
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patory sensing is the user’s desire to share data, regardless of how this data is actually
generated.

(a) Time 1 (b) Time 2 (c) Time 3 (d) Data Analy-
sis

Fig. 1. Illustration of a PSN Derived from a Location Sharing Service.

Location sharing services, such as Foursquare, are examples of participatory sens-
ing systems. The sensed data is an observation (check-in) of a user at a particular
place that indicates, for instance, his/her presence at a restaurant at a certain point in5

time. In this work, we will use the word “check-in” to refer to an event when time and
location of a particular user is recorded or, in the PSN context, sensed.
From a participatory sensing system one can derive a participatory sensor network

(PSN) [Silva et al. 2013b] where the users portable devices are the fundamental build-
ing block. Individuals carrying their devices are able to sense the environment they are10

inserted in and make relevant observations at a personal level. Thus, each node in a
PSN consists of the user plus his/her mobile device. The sensed data is sent to a server,
or the “sink node”. PSNs have several inherent characteristics that distinguish them
from other sensor networks (e.g., wireless sensor networks), for instance, nodes are
autonomous mobile entities (users), and nodes do not face severe energy constraints.15

Figure 1 shows an example of a PSN derived from a location sharing service (e.g.
Foursquare). The figure illustrates the locations shared by four users at three differ-
ent points in time (Figures 1a, 1b and 1c), with each check-in represented by a dashed
arrow. Note that users do not necessarily participate in the system all the time. Collec-
tively, the data shared after a period of time can be analyzed in very different ways. For20

instance, as illustrated in Figure 1d, one can use this data to study regular user trajec-
tories by building a network where nodes represent shared locations and edges connect
shared locations by the same user. Moreover, given the ubiquity of smart phones and
the increasing popularity of location sharing services worldwide, PSNs derived from
such systems include people from different parts of the world, thus providing, at rea-25

sonably low cost, global scalability, as we further discuss next.

4. MAIN CHARACTERISTICS OF THE FOURSQUARE PSN

In this section, we present some characteristics of a participatory sensor network
(PSN) derived from Foursquare (Section 4.1), a popular location sharing service, aim-
ing at illustrating its potential for large scale sensing, in terms of spatial (Section 4.2)30

and temporal coverage (Section 4.3). A more detailed characterization of this PSN can
be found in our previous work [Silva et al. 2013b].

4.1. Data Description

Foursquare is a location sharing service (also known as location-based social network)
created in 2009. It is currently one of the most popular systems of its kind, register-35

ing more than 40 million users3. Foursquare users may share their current locations
with their friends by checking in at specific virtual places (or venues), which, in turn,

3Statistic provided in Foursquare’s main webpage in November 2013.
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Table I. Foursquare categories

Name Abbreviation Sub-categories examples
Arts & Entertainment A&E Comedy Club, Movie Theater, Museum, Casino
College & Education Edu College Lab, Fraternity House, Student Center
Food Food Bakery, Restaurant, Coffee Shop, Pizza Place
Home Home Home, Residential Building
Office Offi Factory, Conference Room
Great Outdoors Outd Baseball Field, Surf Spot, Park, Cemetery
Nightlife Spot NL Bar, Rock Club, Nightclub, Strip Club
Shop & Service Shop Shoe Store, Nail Salon, Deli or Bodega, Music Store
Travel Spot Trvl Airport, Subway, Embassy or Consulate, Hotel

0

5

10

15
x 10

5

# 
of

 c
he

ck
−

in
s

Foo
d
Sho

p
Edu

Out
d

Hom
e
A&E NL

Trv
l
Offi

Fig. 2. Distribution of number of check-ins at all categories of venues.

represent places of the real world (e.g., a restaurant, a shop, etc). Foursquare venues
are grouped into a set of pre-defined categories, and each category is further broken
down into several sub-categories, as shown in Table I. Note that, in this work, we
chose to separate the “Home, Work and Others” category (a single category according
to Foursquare) into two distinct categories, grouping subcategories related to home as5

a new category named “Home”, and leaving the other sub-categories under the “Of-
fice” category (abbreviation “Offi”). We did so to be able to better distinguish human
dynamics using our City Image technique.
The dataset we use in this work consists of check-ins performed by Foursquare users.

Since Foursquare check-ins are not publicly available by default, our data crawling10

was done via Twitter4. Specifically, we collected roughly 4.7 million tweets contain-
ing check-ins, each one providing a URL to the Foursquare website where information
about the geographic location of the associated venue was acquired. For each check-in,
our dataset contains the identifier of the user who did it, the latitude, longitude, iden-
tifier and category of the venue where the check-in was done, as well as the time when15

it was done. Our dataset comprises, in total, 4,672,841 check-ins, done in 1,929,237
different venues, during one week of April 2012.
In order to better understand our dataset, Figure 2 shows the distribution of the

number of check-ins in venues of each category. As we can see, the most popular cat-
egory is Shop, containing around 1 million check-ins, and the least popular is Arts &20

Entertainment, with 222,052 check-ins. Figure 3 shows the complementary cumula-
tive distribution function (CCDF) of the number check-ins shared by each user. The
distribution has a clear heavy tail, implying that user participation may vary widely.
A heavy tail in the distribution of the number of shared check-ins and photos has also
been previously observed in PSNs derived from multiple systems [Noulas et al. 2011a;25

Silva et al. 2013a]. Finally, Figure 4 shows the cumulative distribution function (CDF)
of the time interval between consecutive check-ins by the same user regardless of the

4http://www.twitter.com
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Fig. 4. Cumulative distribution of time in-
terval between consecutive check-ins by the
same user regardless of the location.

Table II. Distribution of check-ins across the selected cities.

City # of check-ins City # of check-ins
Bandung/Indonesia 59.332 Mexico City/Mexico 85.721
Bangkok/Thailand 67.075 Moscow/Russia 59.654
Barcelona/Spain 9.083 New York/USA 86.867

Belo Horizonte/Brazil 18.280 Osaka/Japan 27.396
Buenos Aires/Argentina 17.762 Paris/France 11.746

Chicago/USA 27.446 Rio/Brazil 27.222
Istanbul/Turkey 103.456 San Francisco/USA 17.840
Jakarta/Indonesia 158.732 Santiago/Chile 79.733

Kuala Lumpur/Malaysia 109.048 Sao Paulo/Brazil 85.640
Kuwait City/Kuwait 34.195 Semarang/Indonesia 10.518

London/UK 15.671 Seoul/Korea 26.073
Los Angeles/USA 21.961 Singapore/Singapore 65.534
Madrid/Spain 13.004 Surabaya/Indonesia 38.021

Manila/Philippines 47.343 Sydney/Australia 6.390
Melbourne/Australia 6.182 Tokyo/Japan 118.788

location (i.e., the two check-ins may be at the same venue). As we can see, a signif-
icant fraction of all pairs of consecutive check-ins by the same user occur within a
reasonably short time interval. For example, 40% of the pairs of consecutive check-ins
happen within at most 100 minutes from each other. This was also observed in another
Foursquare dataset [Noulas et al. 2011a] as well as in a dataset collected from Insta-5

gram [Silva et al. 2013a]. The Foursquare dataset used in this present work was also
explored in one of our previous work [Silva et al. 2013b], where additional descriptive
statistics can be found.
In this work, we selected 30 cities around the world to analyze. The cities and the

number of check-ins available in our dataset in each of them are presented in Table II.10

4.2. Network Spatial Coverage

The spatial coverage of the PSN built from our Foursquare dataset is very compre-
hensive across the globe (figure omitted). Despite the more intense sensing activity in
some continents (e.g., North America and Europe) and a higher sparsity in others (e.g.,
Oceania and Africa), this PSN still offers a global scale coverage at reasonably small15

costs. We here analyze the spatial coverage of the Foursquare PSN by focusing on eight
of the selected cities, located in different continents. These cities are: Belo Horizonte
(BH), Chicago, Kuwait City, London, New York (NY), Surabaya, Sydney, and Tokyo.
Figure 5 shows heatmaps of the sensing activity in these cities: the darker the red
color in a particular area, the larger the number of check-ins in that area. The fig-20

ure shows that the PSNs of some of the cities, such as Chicago (Figure 5b), New York
(Figure 5e), and Tokyo (Figure 5h), present a high coverage. On the other hand, there
are some cities with very low sensing coverage, such as Sydney (Figure 5g). This was
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also observed and discussed for a photo sharing system, namely Instagram [Silva et al.
2013a].
Many factors may influence the sensing coverage in a particular area. For example,

economic factors might impact the usage of mobile devices by the local population, ul-
timately impacting sensing coverage. If most people living a given area cannot afford5

to buy a smartphone (or any other mobile device), the local coverage may be low. Simi-
larly, the number of people living in a given area is also another aspect that should be
taken into consideration. Since a central element of a PSN sensor is a human being,
areas with low population density, such as rural areas, or areas with difficult access
(e.g., high hills) are expected to have fewer data sharings (and thus lower coverage).10

Cultural differences are also an important aspect that must be considered. People from
certain cultures might be more aware of (and worried about) privacy issues than oth-
ers, and this might impact their contributions to the PSN in terms of data sharings.

(a) Belo Horizonte (b) Chicago (c) Kuwait (d) London

(e) New York (f) Surabaya (g) Sydney (h) Tokyo

Fig. 5. Sensed locations in eight cities. The number of check-ins in each area is represented by a heatmap.
The color varies from yellow to red (higher intensity).

4.3. Seasonality

We now analyze how the seasonal behavior of humans affects the data sharing by15

observing the times of location sharings in our Foursquare dataset5. Figure 6a shows
the average number of check-ins during each hour of the day, from Monday to Friday,
while Figure 6b shows the same information for Saturday and Sunday. As expected,
the sensing activity presents a diurnal pattern, being very low at dawn and peaking
up later in the day. Considering weekdays (Figure 6a), it is possible to observe three20

clear peaks during the day, one around 8:00 AM (breakfast), another around 1:00 PM
(lunch), and the last one at around 6:00 PM (dinner). In contrast, on weekends, there
is no peak activity in the morning, the lunch peak happens around 1:00 PM, and the
dinner peak is almost flat (from 6:00 PM to 7:00 PM).

5Timestamp is normalized according to the timezone where the check-in was performed.
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(a) Monday to Friday (b) Saturday and Sunday

Fig. 6. Weekdays and weekend location sharing patterns.

Thus, we note four different patterns of sensing activity depending on the time of
day (day or night) and the day of week (weekdays or weekends), as highlighted in
Figure 6. The patterns of check-in activity are in general distinct (except for night pat-
terns, which are somewhat similar on weekdays and weekends), reflecting the fact that
people tend to perform distinct activities on different time periods. Thus, we conduct5

our analysis in the next section separately for each time period.

5. THE CITY IMAGE

Similarly to Kostakos et al. [Kostakos et al. 2009], we believe that cities present dis-
tinct characteristics and evolve over time. Thus, we propose the City Image visualiza-
tion technique, which exploits the movements of the city inhabitants. In summary, the10

City Image is a square matrix that displays a visualization of the dynamics of a city. We
start by describing, in Section 5.1, a transition graph used to build the City Image. We
then describe, in Section 5.2, a technique to identify and quantify the most preferred
and rejected transitions (i.e., movement patterns) in a city. Finally, in Section 5.3, we
show, analyze and compare the City Image for several cities.15

5.1. Transition Graph

As we mentioned before, the sensing activity in a PSN is performed by mobile individ-
uals who choose to share their information. Unlike traditional mobile wireless sensor
networks, the nodes in a PSN move according to their routines or local preferences,
which are dictated by the city dynamics. Thus, we propose a transition graph to map20

the movements of individuals in a PSN, and thus represent the city dynamics.
The proposed transition graph is a directed weighted graphG(V,E), where the nodes

vi ∈ V are the main categories of locations, and a direct edge (i, j) exists from node
vi to node vj if at some point in time an individual performed a check-in at a location
categorized by vj just after performing a check-in at a location categorized by vi. Thus,25

an edge represents a transition between two location categories. The weight w(i, j) of
an edge is the total number of transitions that occurred from node vi to node vj .
A transition between location categories is configured according to three require-

ments. First, the check-ins must be performed consecutively and by the same indi-
vidual. Second, the check-ins should be performed at different venues6. Third, the30

check-ins must occur in the same “social day”, which we define as the 24-hour inter-
val starting at 5:00 am (instead of 12:00 am, since we are interested in capturing the
nightlife transitions as well). Transitions that cross two different “social days” are con-
sidered only if the time interval between them is under four hours. We experimented

6The number of pairs of consecutive check-ins performed at the same venue is very small, representing at
most 1.8% of the total transitions in any analyzed city.
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with alternative strategies by varying the aforementioned threshold from one to five
hours. The results were similar, the variability of the number of transitions that are
discarded as we vary the policy is small: from approximately 2.4% to 5.2% (considering
different time periods). Thus, we chose the threshold of fours hours, which is equal to
the average time interval between consecutive check-ins by the same user (as shown5

in Figure 4).

5.2. Preferred and Rejected City Transitions

We here introduce the City Image technique, which is based on the transition graph
G(V,E) defined in the previous section. In summary, the City Image is a square matrix
that displays a visualization of a city dynamics based on the frequency of transitions10

that are performed by its inhabitants.
After building the transition graph G(V,E), we create ten random graphs

GRi(V,ERi), where i = 1, . . . , 10. Each such graph is built using the same number
of individual transitions in G(V,E). However, instead of considering the actual transi-
tion vi → vj performed by an individual (as reported in our dataset), we randomly pick15

a location category to replace vj , simulating a random walk for this individual.
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Fig. 7. Observed transitions occurrences sorted in a descending order for NY city. Periods: weekday and
weekend during the day and night.
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Fig. 8. Observed transitions occurrences sorted in a descending order for Tokyo. Periods: weekday and
weekend during the day and night.

In Figures 7 and 8 we compare, for each pair of location categories, the number
of transitions that were simulated against the number of transitions that were actu-
ally made by individuals of New York and Tokyo7. In these figures we consider four
time periods: weekday/weekend during the day (from 5:00 am to 6:00 pm), and week-20

day/weekend during the night (from 6:01 pm to 4:59 am). The x-axis represents par-
ticular transitions, e.g., Food → Work, and the y-axis indicates the frequency of this
particular transition. The blue curve (dotted line with a circle marker) represents the

7These results are representative of other cities.
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real transitions (i.e., represented in G), sorted in descending order of number of occur-
rences. The black curve (solid line) is the average number of transitions in the random
graphsGR1..10, and the two green curves (dashed lines) delimit the standard deviation.
The results are shown separately for each time period. Note that, for many transitions,
the number of real occurrences is significantly larger (i.e., by several standard devia-5

tions), than the expected average value in the random graphs. This implies that some
transitions reflect more the preferences and habits of users from a certain city than
others. There are also transitions that do not occur very often, with the number of
real occurrences being much smaller than the average number in the random graphs,
indicating that the inhabitants of this city strongly reject these transitions.10

Based on these observations, we next identify the most and least favorable transi-
tions to occur in a given city. To that end, we adopt one of two strategies, depending on
whether the edge weights of the randomly generated graphs GR1..10 follow a Normal
distribution N(w, σw). If they are normally distributed, we compute the mean w and
the standard deviation σw of the edge weights. We then define the indifference range as15

the interval (w − 3σw, w + 3σw), which is expected to contain 99.73% of the randomly
generated edge weight values, since the edge weights follow a Normal distribution
N(w, σw). Analogously, we define the rejection range as the interval [−∞, w − 3σw], and
the favouring range as the interval [w + 3σw,∞].
In case the edge weight distribution is not Normal, we calculate the maximum (max)20

and minimum (min) values of the randomly generated edge weights. We then define
the indifference range as the interval (min,max),the rejection range as the interval
[−∞,min], and the favouring range as the interval [max,∞].
For all the cities analyzed in the next section, the edge weights of the randomly

generated graphs do follow a Normal distribution, as illustrated in Figures 9 and 10 for25

New York and Tokyo, respectively. These figures show both the histogram of the edge
weights and the fitting of the Normal distribution (red curve with a circle marker).
Note that, for New York city, the fitted Normal distribution has parameters w = 114.85
and σw = 10.712 for weekday during the day. These are the values used to delimit the
rejection range, indifference range and favouring range for the transitions for that city30

in that particular time period.
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Fig. 9. Histogram of Random Generated Transitions for NY with a Normal fitting.

5.3. Building the City Images

Having defined the ranges for preferred, rejected and indifferent transitions in a given
city, we construct a square matrix that represents the movement patterns of the city,
which is here called the City Image. In this matrix, each cell (i, j) represents the will-35

ingness of a transition from category i (line i of the matrix) to another category j
(column j of the matrix). To better visualize this, we color cells that represent tran-
sitions that are not likely to occur in a city, i.e., transitions whose edge weight fall in
the rejection range, in red. We also color transitions that are more likely to occur, i.e.,
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Fig. 10. Histogram of Random Generated Transitions for Tokyo with a Normal fitting.

transitions that fall in the favouring range, in blue. Finally, white color are used in
cells that represent transitions that fall in the indifference range.
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Fig. 11. The image of London for different periods.

We built the City Image for the selected 30 cities, shown in Table II. Delving into
each city, we analyze the City Image for each time period separately. Figure 11–18
present the City Images for London, Kuwait, Belo Horizonte, Chicago, Surabaya, New5

York, Sydney, and Tokyo. Each figure shows the City Image for one of the four time
periods: weekday/weekend during the day and weekday/weekend during the night.
The City Image captures the city dynamics in a very summarized way. Nevertheless,

it can reveal striking differences in the dynamics of the same city across different time
periods (weekdays and weekends, day and night), as well as across different cities.10

Moreover, note that the main diagonal of each matrix indicates a tendency of users not
having consecutive check-ins at the same category. The City Image also provides an
easy way to learn the most and least favored places and transitions of each city in a
given time period.
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Fig. 12. The City Image of Kuwait for different periods.

In general, using the City Image it is possible to distinguish the routines of the in-15

habitants of two particular cities. For instance, in Kuwait (Figure 12) and Surabaya
(Figure 15) we observe the lack of favorable transitions considering the category
nightlife for all analyzed periods. On the other hand, nightlife transitions are strongly
favorable to happen in Chicago (Figure 14) and New York (Figure 16), not only on
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weekend nights but also on weekday nights. Moreover, on weekends at night in-
habitants from Kuwait and Surabaya are very favorable to perform the transitions
shop → food and food → home. This might be explained by cultural differences that
exist among these cities.
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Fig. 13. The City Image of Belo Horizonte for different periods.
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Fig. 14. The City Image of Chicago for different periods.
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Fig. 15. The City Image of Surabaya for different periods.
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Fig. 16. The City Image of New York for different periods.

As another example, note that inhabitants of Belo Horizonte (Figure 13) are highly5

favorable to perform transitions containing the category education. This comes with
no surprise since this city is an important hub of education in Brazil. In this particular
City Image it is also worth noting that the transition education → office is favorable.
This is because, many students in Belo Horizonte do keep a (part-time or full-time) job.
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Fig. 17. The City Image of Sydney for different periods.
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Fig. 18. The City Image of Tokyo for different periods.

This also explains the favorable transition education → home on weekdays at night,
as many students who have a full-time job go to school at night. In contrast, we find
that Chicago residents tend to reject any transition involving the category education
for all analyzed periods. This is surprising, since Chicago has been a world center of
higher education and research, with several universities located in the city.5

We also note that one of the most favored transitions in London (Figure 11) on week-
days during the day is travel → office. A similar trend also happens in other cities, such
as New York and Tokyo (Figure 18). On the other hand, some cities, such as Belo Hori-
zonte, Sydney (Figure 17), Kuwait and Surabaya, do not present favorable transitions
containing the category travel on weekdays during the day. This could be associated10

with a larger number of people who choose to drive to get to their destinations, instead
of taking public transportation.
The City Image technique, as illustrated above, is an interesting way to better un-

derstand the invisible image of a city. It provides a useful tool in various contexts,
ranging from helping city planners to better understand the actual dynamics of a city,15

to providing tourists another source of information that might help them make their
travel choices. The transition tendencies further serve as a source of fundamental in-
formation for social behavior study.
It is important to note some limitations of our dataset. First, it reflects the behavior

of a fraction of the city citizens (those who actively use Foursquare). Second, since20

we only have a sample of the activities that occurred, external factors, such as bad
weather conditions, might have affected the total number of check-ins we collected
for some places, especially those at locations of the outdoor category. Nevertheless,
although these limitations do prevent us from making some general assertions, they
do not invalidate our City Image technique.25

Another possible limitation of our dataset is the covered time interval, one week,
which might be considered short. In order to assess to which extent this might impact
the conclusions drawn from the City Images, we collected the check-ins performed on
the cities of Belo Horizonte, Chicago, London, and Surabaya in the week following the
period covered by our original dataset. We then recalculated the City Images for each30

of these cities using all the data available, thus covering a time interval of two weeks.
We show the results for weekdays during the day, which is the the period where most of
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the routines are performed, in Figure 19. We can observe that the new City Images are
very similar to the corresponding ones produced using our original one-week dataset
(Figures 13a, 14a, 11a, and 15a for Belo Horizonte, Chicago, London, and Surabaya,
respectively). The strong favorable or rejection transitions remain basically the same,
whereas the changes, if observed, occur in some transitions classified in the indiffer-5

ence range. These particular changes are expected because the larger dataset enables
a clearer image of the analyzed city. The same strong similarities were observed for the
City Images produced for the other periods of time (e.g., weekend night). Thus, even
with a single week of data, the City Image technique is able to reveal remarkable and
consistent patterns of each analyzed city.10
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Fig. 19. The image of cities in different regions of the world during the day on weekdays.

6. QUANTITATIVE COMPARISON OF CITIES

An application that naturally emerges from the City Image technique is the numerical
comparison of different cities, by exploiting the values in each square matrix. Specifi-
cally, we propose to compare two cities i and j by following the steps:

(1) For each city i, the weight of each transition t of its City Image is normalized by15

the maximum weight of all transitions in this particular City Image. We refer to
this normalized value as t′i. As a result, we produce a vector Ti = (t′i,1, t

′

i,2, ...t
′

i,81)
containing all normalized transitions (total of 81, as there are 9 location categories)
for a specific City Image;

(2) We then compute the Euclidean distance di,j between each pair of vectors (Ti, Tj) of20

cities i and j. By doing so we are calculating the distance between each considered
city for all transitions.

More generally, the comparison of multiple cities produces a vectorD containing the
distance between each pair of cities. Vector D could then be used in several ways. For
example, it could be exploited to cluster cities by similarity (in terms of movement25

patterns), as shown in the following steps:

(1) Build a hierarchical cluster tree for the cities based on the distances in vector D
using, for example, the Ward’s method [Ward Jr 1963]. This is a general agglom-
erative hierarchical clustering procedure, where the criterion for choosing the pair
of clusters to merge at each step is based on the optimal value of an objective func-30

tion. In our case, this objective function is the minimum total intracluster variance,
which is computed based on the distances D;

(2) Determine the number of clusters c to be generated by visually inspecting the hi-
erarchical cluster tree created, using, for example, a dendrogram plot of the tree;

(3) Prune the tree created in step 1 in order to have c clusters.35

We applied this procedure to compare and cluster the 30 cities analyzed in Section
5.3, considering two different time periods: weekdays during the day, to study the typ-
ical time when users perform their main routines; and weekend during the night, to
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study the typical period when people perform leisure activities. Figure 20 shows the
dendrograms built for each period. The red lines (dashed ones) indicate the cuts used
to define the number of clusters c in each case. We defined c equal to 9 clusters for
weekdays during the day and 7 clusters for weekend during the night.
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Fig. 20. Dendrogram plots for the binary cluster tree of 30 different cities, in two different time periods.

Tables III and IV show the clustering results for weekdays during the day and week-5

ends during the night, respectively. Note that, in general, cities from the same country
or that are geographically close to each other were grouped together. The geograph-
ical proximity, which may reflect, to some extent, cultural similarity, is favorable to
produce a similar behavior between the inhabitants from those cities, and might be
the explanation to the clustering results. However, there are exceptions. For example,10

for weekdays during the day, San Francisco was grouped apart from other American
cities, whereas Bangkok, far away from USA, was grouped in the same cluster as some
American cities. Thus, the inhabitants of cities of the same country do not necessarily
have similar behavior, reflecting heterogeneous patterns which are natural to occur in
large countries, such as USA. Conversely, large geographical distances also do not nec-15

essarily imply large differences in people’s habits. For instance, cities with good trans-
portation system or many options for outdoor activities, such as beaches and parks,
tend to favor transitions containing travel and outdoor, regardless of their particular
geographical location, and tend to differ from other cities, even cities in the same coun-
try, that do not have such facilities.20

We note that the proposed city clustering procedure and the city distance metric
could be applied to a much larger number of cities in the world, with several potential
applications. One example is a personalized city recommendation system for support-
ing tourism-oriented applications. Such application could explore the proposed city
clustering strategy to suggest new cities that the user might like, based on the user’s25

interests (which could be inferred from prior user’s interactions in the system). For
example, by learning that a user liked Bandung during the day, the application might
suggest Surabaya as a city to visit, as the two cities are grouped in the same cluster
and thus have similarities. Location-based social media (like Foursquare) could benefit
from this strategy to improve their current recommendation systems, by introducing30

the City Image as a new criteria.

7. VISUALIZING CITIES THROUGH NETWORK CENTRALITY METRICS

Many metrics of node centrality can be used to estimate the relative importance of a
node within the graph. Although most of these metrics were first developed in social
network analysis [Newman 2010], they can also be applied to a transition graph, sim-35

ilar to the one proposed in Section 5, enabling the study of city dynamics. Thus, in
this section we build a transition graph where each node represents a specific location
(and not location category, as in Section 5), and a direct edge (i, j) exists if someone
performed a check-in at location j after a check-in at location i. The weight of the edge
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Table III. Clustering results for weekday during the day.

Cluster Cities
1 Bandung, Semarang, Surabaya
2 London, Paris, Madrid
3 Kuwait, Singapore, Moscow, Santiago
4 Sydney, Melbourne, Seoul, San Francisco
5 Rio, Belo Horizonte, Sao Paulo, Barcelona,

Buenos Aires
6 Jakarta, Kuala Lumpur, Manila, Mexico

City
7 Los Angeles, Chicago, New York, Bangkok
8 Tokyo, Osaka
9 Istanbul

Table IV. Clustering results for weekend during the night.

Cluster Cities
1 Kuwait, Singapore, Kuala Lumpur,

Manila, Bangkok
2 Tokyo, Osaka
3 Seoul, Jakarta, Bandung, Semarang,

Surabaya
4 Rio, Belo Horizonte, Sao Paulo
5 Istanbul, Moscow
6 Santiago
7 Los Angeles, Chicago, San Francisco, New

York, Melbourne, Sydney, Paris, Madrid,
London, Barcelona, Buenos Aires, Mexico
City

reflects the number of transitions between the two specific locations. These transitions
are configured according to the same requirements defined in Section 5.

Table V. Centrality metrics for NY during the day and night.

Day Night

Degree Closeness Node Betweenness Degree Closeness Betweenness

Value Venue Value Venue Value Venue Value Venue Value Venue Value Venue

0.04 Yankee S. 0.18 Yankee S. 0.1 Yankee S. 0.01 Yankee S. 0.06 Yankee S. 0.02 Yankee S.

0.02 Penn S. 0.18 Penn S. 0.05 Penn S. 0.007 Penn S. 0.06 Penn S. 0.01 Penn S.

0.02 Grand C. 0.18 Times S. 0.04 Grand C. 0.007 Times S. 0.06 Mad. S. G. 0.007 Tribeca F. F.

0.02 Mad. S. G. 0.17 Grand C. 0.03 Times S. 0.006 Mad. S. G. 0.06 Times S. 0.007 Mad. S. G.

0.02 Times S. 0.17 Mad. S. G. 0.03 Mad. S. G. 0.005 Tribeca F. F. 0.06 Tribeca F. F 0.007 Times S.

0.01 Bryant 0.17 Bryant 0.03 Union S. 0.005 Grand C. 0.06 Grand C. 0.006 Grand C.

0.01 Union S. 0.17 Union S. 0.03 Bryant 0.004 Webster H. 0.06 Bowery B. 0.004 Webster H.

0.01 Wash. S. 0.17 Int. Auto Show 0.02 Wash. S. 0.003 Union S. 0.06 Term. 5 0.003 Bryant

0.009 MoMa 0.17 Rockef. C. 0.02 Mad. Sq. P. 0.003 Bowery B. 0.06 Brook. Bowl 0.003 Pacha

0.008 Port A. 0.16 Port A. 0.01 Port A. 0.003 Port A. 0.06 Pacha 0.003 Radio City

Traditionally used centrality metrics are degree, closeness and betweenness central-
ity [Bonacich 1987]. These metrics aim to identify nodes that have central locations
within the network structure. Since nodes in our networks represent locations, a cen-5

tral node may indicate a strategic point in the city, according to a specific metric. For
example, the main idea behind the degree centrality is to identify the total number of
links incident to a node, i.e., the number of incoming and outgoing edges that a node
has. In our transition networks, a node with high degree indicates a location where
people may arrive and depart with a high probability. Thus, degree centrality is a good10

measure to identify popular places in the city. These locations can be seen as city hubs.
The closeness centrality metric is related to how close a node is to all other nodes

in the network, i.e., the number of edges separating a node from the others. In the
context of information dissemination, the higher the closeness of a place, the higher
the probability that a piece of information being disseminated from that place reaches15

the whole network in the least amount of time. In the perspective of a transition graph,
the closeness centrality may indicate favorable locations in the network structure to
start the dissemination of information to the whole network. These locations may be
strategic places to install public information centers to disseminate, for example, alerts
using users’ portable devices in an ad hoc manner.20

Finally, the main idea behind the betweenness centrality is to show how often a node
is in the shortest path between any two other nodes. In our transition networks, it may
indicate the most interesting locations to act as bridges to carry information among
different places or regions of places (set of places). That is, the higher the betweenness
of a location, the higher the chance that a user passes through that particular location.25
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One could explore these central nodes to sign a commercial agreement to increase their
revenues by, for instance, making an advertising in order to direct flow of users to other
independent business venues in the city.
We illustrate the use of these centrality metrics by showing in Table V the top-10

locations with the largest degree, betweenness, and closeness centrality values in New5

York. The table presents results for two time periods, day (5:00 am to 7:00 pm) and
night (6:00 pm to 6:00 am)8, aggregating results for weekdays and weekends for the
sake of avoiding hurting the presentation with excessive data. Note that most top-10
locations, according to all metrics, are widely known. Some of these locations, such as
Yankee Stadium (Yankee S.), are in the top-10 according to all metrics and in both10

analyzed periods, whereas others appear in the top-10 list of only one metric, such as
MoMa which is listed only in the degree centrality column. This demonstrates that
different centrality metrics may identify different central places.
We note that the Tribeca Film Festival (Tribeca F. F.) was identified as a central

place in all metrics during the night. Foursquare encouraged users to check-in in this15

event offering a special badge for it. This justifies the large number of check-ins and,
thus, the increase of centrality. Since in the studied network nodes are venues and
venues tend to be dynamic, a temporal analysis when studying centrality is desirable.
In this case, it would be possible to identify that Tribeca F. F. was a temporary venue,
and thus avoid considering it a central location after its expiration date.20

We also note the greater diversity of central locations across metrics for the night
period. In other words, there is a larger number of locations that appear among the
top-10 according to only one or two metrics during the night. The type of these lo-
cations might help explain the results. Observe that nightlife places, such as Pacha
and Brooklyn Bowl, are not listed in the top-10 locations with highest degrees. Yet,25

they are amongst the locations with highest betweenness and closeness values. This
could be explained by the routine of people, who usually go to a pub or a restaurant
before going to a nightlife spot. This first visited location might not be very popular,
e.g. a random place close to the user’s house that might be far away from the target
place (nightlife spot). This could connect different regions from the network, helping30

to increase the betweenness of the first location. Alternatively, the first visited location
could be a popular place, helping to increase the closeness.
Network visualization: The visualization of transition graphs, specially highlight-

ing central places, is interesting because it gives fascinating insights into how people
move and interact with the city. The edges in the transition graphs represent somehow35

a rudimentary GPS tracking. After aggregating the transitions performed by all users,
the final network enables the reconstruction of typical paths that users take to move
in the city. When representing the information of centrality of a place in this network
we are also able to visualize and understand better how users interact with the city.
Figures 21, 22, and 239 show such networks for Belo Horizonte and New York, during40

the day and night, for the degree, betweenness, and closeness centrality, respectively.
Each color represents a category of place, as defined in the caption of Figure 21.
Studying the results for New York, for example, it is possible to observe that dur-

ing the day there is an intense movement of people between Manhattan, New Jersey,
Brooklyn, and Queens, where Manhattan is the central destination. However, during45

the night the movement of people between Manhattan and New Jersey is much lower,

8If one transition happened in the overlapped hours (5:00 am to 6:00 am, or 6:00 pm to 7:00 pm), it is consid-
ered a transition of day and night periods, respectively. NY has 49,849 check-ins during the day and 19,491
check-ins during the night.
9The area represented by those networks is the same as the one shown in Figure 5. Nodes disposition
respects their geo-location in the city.
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although the movement between Manhattan, Brooklyn and Queens is still quite in-
tense. This might indicate that people from New Jersey tend to go to Manhattan more
often to work during the day than for leisure time at night.
As another example, Figures 22a and 22b show that, during the day, both New York

and Belo Horizonte have a few places that stand out with higher betweenness values5

than the others in the same city. This does not happen in the same proportion for the
degree centrality, as shown in Figures 21a and Figure 21b. Moreover, the same dis-
crepancies can not be observed for neither centrality metric during the night (Figures
21c, 21d, 22c, and 22d), which might be explained by the lack of peoples’ routines.
Regarding the closeness metric, we can see a large number of places with high close-10

ness during the day in both cities (Figures 23a and 23b), implying that there are many
options of places to select in case one wishes to install alert dissemination schemes
in the city, for example. Note also that places with high closeness are relatively well
spread in both cities during the day. However, this is not the case during the night
(Figures 23c and 23d). The results in this period follow the same tendency observed15

for the other metrics and the explanation might be the same, i.e., lack of well defined
routines.
Information summarization: Tables VI, VII, and VIII show the summarization

of values of each centrality metric (degree (D), betweenness (B), and closeness (C)),
calculated for all places during the day and night in Belo Horizonte, New York, and20

Tokyo, respectively. The summarization is expressed by the percentage relative to the
total of values by category of places. For example, in Table VI we can see that, during
the day, all places of the category Food represent 17.7% of all degree centrality ob-
served. These tables we help us to visualize the cities by their most important classes
of places. Analyzing the top degree centrality during the day we can observe that in-25

habitants of Belo Horizonte concentrate a lot of activities in education, shopping and
working (represented by the category Office), having the categories of places Food10,
Office, Shop and Education as the most popular. Following the same analysis, places
related to working, shopping, and nightlife are quite central in New York. Studying
now the centrality in Tokyo it is interesting to observe the high amount of activity in30

Travel places, probably related to public transportation spots. Note the high value for
betweenness and the considerable lower value for closeness. This means that inhabi-
tants of Tokyo might use public transportation to move to areas with not many central
places, such as suburbs, justifying the values observed for betweenness and closeness.
Regarding to privacy issues, observe the centrality in the category of places Home. In35

Belo Horizonte the number of check-ins is expressive in this category. However, in NY
and mainly in Tokyo people do not appear to have the same behavior. This fact might
be explained to cultural differences. It is known that Japanese people are concerned
with privacy issues, and apparently Brazilians are not as concerned.
Differences in the habits of inhabitants of the cities can also be captured by those40

tables. During the night, places related to education are still quite central in Belo
Horizonte, but not in NY or Tokyo. This is explained because night courses in schools
and universities are common in Belo Horizonte, since many people have to work during
the day to pay their studies. In New York, as expected, the centrality of places related
to nightlife and arts & entertainment is high. On the other hand, shopping places45

have high centrality in Tokyo for this considered period. This analysis illustrates how
we can visualize characteristics of cities, and the potential of using it to differentiate
them.

10We consider that food activities are complementary to a main activity, such as work or study, for this
reason we are not mentioning it as a main activity
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Table VI. Summarization of val-
ues of each centrality metric calcu-
lated for all places in BH (day and
night). D=degree, B=betweenness,
C=closeness.

Categ. D. (%) B. (%) C. (%)

Day

Food 17.7 14.9 21.6

Shop 13.8 22.5 12.9

Edu 14.5 15.8 10.6

Outd 9.1 15.3 6.3

Home 9.1 4.7 11.04

A&E 3.4 3.6 4.3

NL 4 3.2 5.7

Trvl 5.3 6.5 4.7

Offi 20.4 12.7 20

none 2 1 2.9

Night

Food 18.7 19.5 23.3

Shop 9.5 16.1 7.9

Edu 11.3 11.9 9.1

Outd 9.26 16.5 8.6

Home 15.3 6.2 14

A&E 5.5 5.6 5.2

NL 10.3 14.1 13.6

Trvl 3.9 3.4 4

Offi 14.6 6.1 13

none 1.5 0.3 1.4

Table VII. Summarization of val-
ues of each centrality metric calcu-
lated for all places in NY (day and
night). D=degree, B=betweenness,
C=closeness.

Categ. D. (%) B. (%) C. (%)

Day

Food 29.5 21.8 33.3

Shop 13.5 13.2 15.1

Edu 2.5 1.9 2.5

Outd 8.8 15.2 6.1

Home 2 1 3.1

A&E 9.5 15.6 6.2

NL 10.2 8.4 10.4

Trvl 7 10.9 5.7

Offi 14.7 11 14.2

none 2 0.9 3.3

Night

Food 31.1 22.7 36.4

Shop 7.4 6.4 7.8

Edu 1.5 0.6 1.5

Outd 5.8 8.3 5

Home 3.2 1.1 3.6

A&E 10 17.3 7.2

NL 23.4 27.1 23.7

Trvl 6.6 9.9 6.1

Offi 9.4 6.3 6.8

none 1.6 0.5 2

Table VIII. Summarization of values
of each centrality metric calculated
for all places in Tokyo (day and
night). D=degree, B=betweenness,
C=closeness.

Categ. D. (%) B. (%) C. (%)

Day

Food 25.4 15.7 39.2

Shop 16.3 13.9 18

Edu 3.1 1.8 3

Outd 4 4.2 4.8

Home 0.2 0.1 0.4

A&E 5.1 4.2 4.8

NL 2.9 1.3 5.7

Trvl 32.8 50.8 11.8

Offi 8.8 7.4 10

none 1.3 0.6 2.4

Night

Food 26.9 10.8 35.4

Shop 13.3 11.1 15.7

Edu 1.1 0.6 1.1

Outd 3 3.2 3.7

Home 0.4 0.1 0.7

A&E 5 3.2 5.4

NL 7.5 3.6 10.8

Trvl 35.8 63.5 20

Offi 5.4 2.8 5.4

none 1.4 0.6 1.8

(a) BH - Day (b) NY - Day (c) BH - Night (d) NY - Night

Fig. 21. Node degree - For two cities in different countries. Each node color represents an specific category of
places. Blue=Arts& Entertainment; Red = College & Education; Light Green = Food; Yellow = Home; Green
Moss = Office; Purple = Nightlife Spot; White = Great Outdoors; Beige = Shop & Service; Grey = Travel spot;
Cyan = no category.

(a) BH - Day (b) NY - Day (c) BH - Night (d) NY - Night

Fig. 22. Node Betweenness - For two cities in different countries. Colors legend: see caption of Figure 21.
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(a) BH - Day (b) NY - Day (c) BH - Night (d) NY - Night

Fig. 23. Node Closeness - For two cities in different countries. Colors legend: see caption of Figure 21.

8. CONCLUSIONS AND FUTURE WORK

Participatory sensor networks (PSNs) have the potential to become a fundamental tool
to study social behavior at large scale. A simple and important type of sensing data is
human location, which clearly captures one of the key dimensions of the dynamics of
a city. Currently popular location sharing services, such as Foursquare, allow users to5

share their actual locations, which are associated with different location categories.
Thus, PSNs derived from such services provide an unprecedented opportunity to ana-
lyze large scale city dynamics.
In this article we investigated the potential of PSNs derived from Foursquare to

study city dynamics. First, we presented a visualization technique called City Image,10

and illustrated its use in 30 different cities around the world. This technique sum-
marizes the city dynamics based on transition graphs that map the movements of
individuals between different location categories in the PSN. We also showed the use
of this technique for clustering cities based on their similarities in terms of movement
patterns, which can be exploited to build city recommendation systems (see below). Fi-15

nally, we investigated the use of centrality metrics, computed on transition networks
built at the granularity of specific venues, as a means to complement the City Image
technique towards a deeper understading of the city dynamics.
The proposed City Image technique can be a valuable component in the design and

improvement of various socio-technical systems, such as:20

—New recommendation systems for driving and supporting tourism-oriented applica-
tions. For instance, a city recommender system could exploit the similarity between
cities, captured by our City Image technique, as well as information about the profile
and interests of users to provide personalized city recommendations;

—New tools to support city planners to detect (in near-real time) and react to changes25

in the dynamics of the city. For example, urban traffic actions could be employed to
react to the appearance of new crowded areas;

—New customer recommendation systems for taxi drivers (and other classes of work-
ers) to help them meet the current demand in different regions of the city.

Possible directions for future work include: extending our study to include other30

types of participatory sensing systems; exploiting the City Image technique and the
proposed city clustering methodology to build new recommendation services (such as
the aforementioned ones), and investigating privacy issues related to the City Image
technique.
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