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Abstract—Reliable edge detection is of utmost importance
to many sophisticated computer vision methods and has been
historically computed using luminance differences, which are
quite sensitive to changes in illumination. It is argued here that
using luminance ratios for edge detection in computer vision,
rather than luminance differences, results in more robust edge
information with respect to changes in illumination, which is in
line with theoretical models for the lightness constancy observed
in human visual perception. In order to test this hypothesis, a sim-
ple technique that converts luminance differences into luminance
ratios with minimal effort is proposed. Experiments regarding
edge detection and image segmentation under simulated changes
in illumination show promising results for the luminance ratio
approach.

I. INTRODUCTION

Adaptation to different illumination conditions is a fun-
damental trait of the human visual system, which is also
extremely desirable to computer vision systems that aim
at extracting robust environmental descriptions from images
regardless of illumination changes. This particular trait is
known as perceptual constancy and consists in perceiving the
properties of visual objects, which are usually constant over
different viewing conditions, rather than the properties of their
projected images, which are variable over different viewing
conditions [1]. Figure 1 illustrates the concept of achromatic
lightness constancy, which is the main subject of this paper.
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Fig. 1. Achromatic lightness constancy: human perception of black ink on
white paper is the same under very different illumination levels (adapted from
[1]).

Human perception of black ink on white paper is the same
despite the amount of illumination in the environment. How-
ever, the example in Fig. 1 shows that the amount of reflected
light outdoors is a hundred times larger than indoors – what
remains constant in both illumination conditions is the relative
amount of reflected light for dark and light regions of the
image. According to the theory of lightness constancy of Hans
Wallach [2], luminance ratios are what determine perceived
lightness and contrast – one can notice that the luminance ratio
is the same (9:1) in both illumination conditions depicted in
Fig. 1.

In computer vision, a key concept regards edge detection –
measurements of local contrast that allow the segmentation
of image regions according to the reflected luminance. Edge
detection in computer vision systems has been historically
estimated by difference operators – for example, convolution
with Prewitt or Sobel masks – which approximate luminance
gradients. This technique, whose results are rather sensitive
to changes in illumination, dates back to an age in which
computing power was very limited in terms of mathematical
functions available for practical implementations. With the
increased computing power that became largely available and
now allows practical implementations using more sophisticated
mathematical functions and also more advanced numerical
representations, a paradigm shift towards edge detection using
luminance ratios may be in order. The hypothesis is that lumi-
nance ratios are able to provide edge information that is more
robust to illumination changes than luminance differences. In
this context, a quantitative performance comparison of edge
detection using both luminance differences and luminance
ratios is made here for simulated changes in illumination.

The remainder of this paper is structured as follows. In
Section II, a simple mathematical property that conveniently
converts luminance differences into luminance ratios is de-
scribed. Section III presents the experimental setup used to
test the ratio-based edge detection and compare it to the
difference-based approach. The experimental results obtained
are presented and discussed in Section IV, and finally, in
Section V, conclusions are drawn and future work outlined.

II. LUMINANCE RATIOS FROM LUMINANCE DIFFERENCES

A vast number of computer vision methods rely on in-
formation extracted from gray level images using luminance
differences, which are quite simple to compute and provide
effective results if illumination conditions are kept reasonably
constant. The purpose here is to establish a method to convert
luminance differences into luminance ratios without resorting
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to radical changes in existing edge detection techniques, so
that more sophisticated methods that rely on them can benefit
almost immediately from edge information that is more robust
to changes in illumination.

A very simple way of mapping ratios to differences consists
in using the well-known property of logarithms expressed in
Eq. 1:

logb

(
p

q

)
= logb(p)− logb(q). (1)

Equation 2 shows a convenient way of mapping eight-bit
gray levels to a normalised logarithmic scale, when b = 256
is used:

g(x, y) = log256[f(x, y) + 1], (2)

where g(x, y) is the logarithmic mapping in the range [0, 1]
of gray level f(x, y). The inverse mapping, from normalised
logarithmic values back to the linear scale in the range [0, 255],
can be done by using Eq. 3:

f(x, y) = 256g(x,y) − 1. (3)

Therefore, performing ratio-based edge detection merely
consists in three steps: (1) mapping the original input image
to the normalised logarithmic scale using Eq. 2; (2) per-
forming conventional difference-based edge detection with no
alterations; (3) optionally mapping the resulting edge image
(magnitude only) back to the linear scale using Eq. 3. It is
worth noting that ratio-based edge detection preserves the
direction of local image gradients to great extent. Floating
point numerical representations must be used in all steps in
order to ensure accuracy of results.

III. EXPERIMENTAL SETUP

In order to test the proposed ratio-based edge detection
method and make comparisons to the existing difference-based
method, experiments were designed in which image intensities
were artificially manipulated. A gray level version of the Lena
image with 256× 256 pixels in size was used as input to both
techniques, with synthetic changes in illumination obtained
by applying increasing attenuation factors (from 0% to 100%
in steps of 5%) to the pixels of the image. Two scenarios
were investigated: (1) uniform attenuation factors were applied
globally to the input image; (2) varying attenuation factors
were applied locally to the input image, following v-shaped
profiles, as shown in Fig. 2.

The v-shaped attenuation profiles used in the experiments
have maximum attenuation in the middle of the horizontal
dimension of the input image. Figure 2 shows two examples
of such attenuation profiles, one of them with maximum
attenuation of 50% (blue line) and the other with maximum
attenuation of 100% (red line). This approach is used to
investigate the performance behaviour of both edge detection
approaches when nonuniform illumination profiles affect the
input image.

The expected outcome of these experiments is that ratio-
based (logarithmic gradient) edges are less sensitive to changes
in illumination than their difference-based (linear gradient)
counterparts.
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Fig. 2. V-shaped attenuation profiles: intensity attenuation is a function of
the horizontal coordinate of pixels in the original input image. The blue line
corresponds to a maximum attenuation of 50% while the red line corresponds
to a maximum attenuation of 100% in the middle of the image.

Figure 3 shows examples of the resulting input images
after the synthetic illumination changes described before. The
original Lena image is shown in Fig. 3a, whereas Fig. 3b
shows its uniformly attenuated version at 50%. Figures 3c
and 3d show the resulting input images after the v-shaped
attenuation profiles at 50% and 100% (see Fig. 2) were applied,
respectively, where progressively dark vertical lines in the
middle of the images can be noticed.

(a) (b)

(c) (d)

Fig. 3. Input images: (a) original Lena image; (b) 50% uniform intensity
attenuation; (c) 50% v-shaped intensity attenuation profile (blue line in Fig. 2);
(d) 100% v-shaped intensity attenuation profile (red line in Fig. 2).

X Workshop de Visão Computacional - WVC 2014 265



A first experiment was conducted, in which the original
Lena image and its attenuated versions were used as inputs
to the Sobel edge detection method [3], both using the con-
ventional difference-based approach (linear gradient) and the
proposed ratio-based approach (logarithmic gradient). In order
to assess the influence of changes in luminance, the edge
results for the original image were used as a baseline for
computing the root mean square (RMS) error of edge results
for each attenuated image.

The RMS error for edge magnitudes was computed using:

meRMS =

√√√√ 1

MN

M−1∑

x=0

N−1∑

y=0

[ma(x, y)−mo(x, y)]2, (4)

where M is the horizontal image dimension, N is the vertical
image dimension, ma(x, y) are the resulting edge magnitudes
for the attenuated image and mo(x, y) are the edge magnitudes
for the original image. The RMS error for edge magnitudes
was normalised using the extreme case in which no edges can
be detected (100% uniform attenuation):

meRMS,max =

√√√√ 1

MN

M−1∑

x=0

N−1∑

y=0

mo(x, y)2. (5)

The RMS error for edge directions was computed using a
modified version of Eq. 4:

deRMS =

√√√√ 1

MN

M−1∑

x=0

N−1∑

y=0

[angdif(oa(x, y), oo(x, y))]2,

(6)
where angdif(·) is a function that computes angular differences
considering their periodicity, oa(x, y) are the resulting edge
directions for the attenuated image and oo(x, y) are the edge
directions for the original image, always having the difference-
based edge directions as baseline. The RMS error for edge
directions was normalised using the extreme case in which all
directions are opposite to the baseline reference:

deRMS,max =

√√√√ 1

MN

M−1∑

x=0

N−1∑

y=0

π2. (7)

In order to minimise the effect of noise, directions cor-
responding to weak edge responses (less than 10% of the
maximum edge magnitude in the entire image) are discarded
when computing the RMS error for edge directions.

Finally, an additional experiment was conducted using the
same set of images as inputs to the blob colouring segmen-
tation algorithm [4], which is based in luminance differences
between adjacent pixels and is therefore known to be sensitive
to changes in illumination, which can cause flooding effects
that merge adjacent regions. A preliminary quantitative assess-
ment of how much changes in luminance affect blob colouring
segmentation results was done by counting the number of
segmented regions when using both concepts of linear and
logarithmic gradients.

IV. EXPERIMENTAL RESULTS

A. Sobel Edge Detection

The experiments regarding the impact of changes in illu-
mination on Sobel edge detection [3] were initially conducted
using uniform luminance attenuation (see Figs. 3a and 3b), in
which resulting edge magnitudes and directions were assessed
for increasing attenuation factors.

Fig. 4 shows the normalized RMS error for edge magni-
tudes as a function of uniform intensity attenuation for linear
and logarithmic gradient approaches.
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Fig. 4. Normalised RMS error for gradient magnitudes as a function
of uniform intensity attenuation: linear gradient magnitudes (blue line) are
heavily affected by changes in luminance, whereas logarithmic gradient
magnitudes (red line) are much more robust – 80% intensity attenuation results
in less than 10% of the maximum RMS error when using the logarithmic
gradient.

As can be clearly noticed in Fig. 4, the normalised RMS
error for linear gradient magnitudes increases linearly with
uniform luminance attenuation, indicating that the conven-
tional difference-based edge detection performance is heavily
affected by changes in illumination. On the other hand, the
normalised RMS error for logarithmic gradient magnitudes
is less affected by changes in illumination, as predicted by
Wallach’s lightness constancy theory [2] – uniform attenuation
factors as high as 80% result in less than 10% of the maximum
expected RMS error for ratio-based edge magnitudes.

Figure 5 shows that the normalised RMS error for edge
directions as a function of uniform changes in illumination is
not critical for both linear and logarithmic gradient approaches,
but the results indicate that the logarithmic gradient approach
yields a small directional offset in comparison to the reference
baseline, given by the conventional linear gradient directions
of the original input image. However, Fig. 5 also indicates
that logarithmic gradient directions are much more stable to
changes in luminance than their linear gradient counterparts,
a characteristic that is desirable to gradient-based descriptors
often used in state-of-the-art object recognition methods such
as SIFT [5], [6] and SURF [7].
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Fig. 5. Normalised RMS error for gradient directions as a function of
uniform intensity attenuation: despite presenting a small average angular
offset, logarithmic gradient directions (red line) are more stable to changes in
luminance when compared to linear gradient directions (blue line).

Following the experiments regarding the impact of uniform
changes in illumination on Sobel edge detection, additional
experiments regarding nonuniform gradual changes in lumi-
nance were conducted. In these experiments, the resulting
edge magnitudes and directions were assessed for increasing
maximum attenuation factors in v-shaped attenuation profiles
(see Figs. 2, 3c and 3d).

The normalised RMS error for edge magnitudes as a func-
tion of nonuniform intensity attenuation for linear (difference-
based) and logarithmic (ratio-based) gradient approaches is
shown in Fig. 6.
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Fig. 6. Normalised RMS error for gradient magnitudes as a function of
nonuniform intensity attenuation (v-shaped attenuation profile): as in the
case of uniform intensity attenuation, linear gradient magnitudes (blue line)
are much more affected by changes in luminance than logarithmic gradient
magnitudes (red line).

It can be noticed in Fig. 6 that conventional linear gradient
magnitudes are much more affected by nonuniform changes
in illumination than logarithmic gradient magnitudes, as ex-
pected. Figure 7 visually illustrates the effects of the v-shaped
attenuation profiles (100% maximum attenuation) on edge
detection using both linear and logarithmic approaches.

(a) (b)

(c) (d)

Fig. 7. Sobel edge detection results: (a) linear gradient magnitude (original
input image); (b) logarithmic gradient magnitude (original input image); (c)
linear gradient magnitude (100% v-shaped attenuation profile); (d) logarithmic
gradient magnitude (100% v-shaped attenuation profile). The resulting linear
gradient magnitude is much more affected than the resulting logarithmic
gradient magnitude when comparing (c) and (d). All edge images were
complemented for visualisation purposes, but absolute magnitudes were kept
unchanged in order to allow fair visual comparisons between results.

Although stronger edge responses can be observed in the
linear gradient results for the original input image (Fig. 7a),
linear edge responses are somewhat noisy and clearly fade
away when the image is affected by nonuniform attenuation,
especially in the middle of the horizontal dimension (Fig. 7c).
In the case of logarithmic gradient results for the original
input image (Fig. 7b), edge responses are not as strong as the
ones observed in the linear case. However, logarithmic edge
responses are less noisy and do not fade away when the input
image is affected (Fig. 7d) – except from some vertical artifacts
that appear in the middle of the horizontal dimension as a
result of extreme intensity attenuation in that region (100%),
overall logarithmic edge responses are reasonably stable to
nonuniform changes in luminance.

The impact of nonuniform changes in luminance on edge
directions is shown in Fig. 8, where it can be noticed that
difference-based edge directions are more severely affected
by nonuniform changes in illumination – notice that the
normalised RMS error for linear gradient directions rises at
higher rates in comparison to Fig. 5. On the other hand,
ratio-based edge directions show stable behaviour even in the
presence of gradual changes in illumination.
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Fig. 8. Normalised RMS error for gradient directions as a function of
nonuniform intensity attenuation (v-shaped attenuation profile): logarithmic
gradient directions (red line) are more stable to changes in luminance than
linear gradient directions (blue line), which are more severely affected by
nonuniform than uniform intensity changes (compare to Fig. 5).

B. Blob Colouring Segmentation

The final experiment was conducted in the context of the
blob colouring algorithm, which is a segmentation method
that grows regions based on the contrast between adjacent
pixels [4]. The objective of this last experiment was to as-
sess how blob colouring segmentation results are affected by
changes in illumination, when difference-based or ratio-based
contrast estimation are used. For that, the number of resulting
regions at the end of the segmentation process was used as a
direct quantitative measurement of the impact of uniform and
nonuniform changes in luminance. The threshold used for the
difference-based approach was 7% of the maximum possible
contrast magnitude and the threshold used for the ratio-based
approach was 3.3% – these values were chosen to result in
approximately the same number of regions for the original
image.

Figure 9 shows the number of regions resulting from the
blob colouring process as a function of uniform intensity
attenuation for both difference-based and ratio-based contrast.
It can be noticed that the number of regions for the linear
approach are radically affected by luminance attenuation –
originally separated regions are gradually merged because
of the resulting difference-based contrast attenuation. On the
other hand, the number of regions for the logarithmic approach
is reasonably stable for a wide range of attenuation factors.
The unexpected peak observed in the number of regions for
the logarithmic approach is explained by truncation errors in
small intensity values that happen as part of the simulation of
changes in illumination.

The number of regions resulting from the blob colouring
process when nonuniform luminance attenuation is applied to
the original input image is shown in Fig. 10, where once more
it can be noticed that the ratio-based approach is still much
more resilient to changes in luminance when compared to the
conventional difference-based approach.
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Fig. 9. Number of regions resulting from the blob colouring process
as a function of uniform intensity attenuation: the number of segmented
regions for the difference-based (linear) contrast decreases radically with
increasing uniform attenuation factors, as a result of originally separated
regions being merged, whereas the number of segmented regions for the ratio-
based (logarithmic) contrast is reasonably stable (the unexpected peak at 95%
attenuation is due to truncation errors in small intensity values).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
200

400

600

800

1000

1200

1400

1600

V−shaped attenuation profile

N
um

be
r 

of
 r

eg
io

ns

Blob colouring segmentation

 

 

Linear
Logarithmic

Fig. 10. Number of regions resulting from the blob colouring process as
a function of nonuniform intensity attenuation (v-shaped attenuation profile):
the number of segmented regions for the ratio-based (logarithmic) contrast is
much more stable than the number of segmented regions for the difference-
based (linear) contrast.

V. CONCLUSION

Wallach’s theory of lightness constancy states that human
perception of contrast is based on luminance ratios [2], which
provide a large degree of invariance to changes in illumination.
However, contrast estimations in computer vision are tradition-
ally computed by difference operators [3], which in their turn
are quite sensitive to changes in illumination.
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In this work, a simple mathematical property was used in
order to convert luminance differences into luminance ratios,
enabling changes with minimal effort in existing difference-
based edge detection algorithms. Despite its simplicity, the
proposed method provides edge detection results that are much
more stable to changes in illumination and therefore can be of
special interest to more versatile computer vision applications.

Preliminary experiments assessing the performance of
difference-based and ratio-based gradients indicate that the
ratio-based approach is indeed rather robust to simulated
changes in luminance in the context of edge detection and im-
age segmentation. Future work includes extending experiments
to test the ratio-based edge detection approach using input
images acquired in different physical lighting conditions, and
also testing this concept in the context of object recognition
algorithms such as SIFT [5], [6] and SURF [7].
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