
Focus of Expansion Estimation for
Motion Segmentation from a Single Camera
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Abstract

This paper proposes a new approach to motion segmen-
tation from video sequences acquired using a single cam-
era, whose aim is to identify which components are due to
pure egomotion and which components are due to indepen-

dent moving objects within the observed motion field. The
model has three main steps, namely computation of the op-
tical flow field, estimation of the focus of expansion and
classification under constraints. Preliminary results show
that estimation of the focus of expansion followed by sim-
ple clustering techniques is promising for the achievement
of motion segmentation when using a single camera with no
a priori information about the environment.

1. Introduction

Animal survival relies on the ability to perceive move-

ments, distinguishing the static environment from moving

agents, so that the animal can act appropriately. As the ma-

jority of objects in real environments is usually stationary,

biological visual systems became sensitive to movement

events and the environment itself can be considered station-

ary [14]. This ability is also very useful for artificial agents

aiming to operate in dynamic environments.

Reproducing the ability of motion segmentation compu-

tationally is a complex task, which involves defining deci-

sion rules and handling noise. The computational problem

is even more complicated when there is no a priori infor-

mation about the egomotion (i.e. camera motion) or the be-

haviour of moving objects in the environment, which is al-

most always the case.

According to Gibson’s Ecological Theory of Percep-

tion [4], the human visual system is able to extract all the

necessary environmental information from the optical flow

field at the viewer’s retina. In his theory, Gibson states that

the environmental optical information converges to a sin-

gle point in space, forming the Dynamic Ambient Optical

Array. Although this may be a controversial statement, it

will be considered here when dealing computationally with

movement analysis.

Let the focus of expansion be the representation of the

Dynamic Ambient Optical Array on the 2D image projec-

tion of the environment, namely a single point in space

where all optical flow vectors due to camera movement

(image background optical flow vectors) intersect. So, es-

timating the focus of expansion may provide, according to

Gibson’s theory, all the egomotion information necessary to

motion segmentation.

In a computational vision system, the information about

movement is obtained from computing the optical flow

field, which can be obtained in several ways, such as in Horn

and Schunk [6], Lucas and Kanade [8], Shi and Tomasi [16],

Nordberg and Farneback [13] or Fleet and Weiss [3]. There-

fore, it may be possible to extract all – or almost all – infor-

mation about the environment from the calculated optical

flow field.

Video sequences acquired with stereo cameras simulate

similar conditions as the ones present in the human visual

system, but the availability of more than a single camera

may not always be possible. With a single camera, depth in-

formation without a priori information is not available, but

a possible solution for this problem is to model movement

from image motion, rather than from object motion.

In this paper we compute image motion in the form

of optical flow vectors obtained from a single camera and

make some assumptions due to the unavailability of a pri-
ori information about egomotion:

1. The majority of optical flow vectors within the optical

flow field are relative to egomotion, so the majority of

pixels within a frame of a video sequence are related

to the static environment (background).

2. The environment optical flow vectors theoretically

converge to a single point in space – the Dynamic Am-
bient Optical Array – from now on called the focus of

expansion (FoE) point.
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3. The presence of independent moving objects and also

noise in the optical flow computation will generate

multiple additional FoE candidate locations, corre-

sponding to different moving groups of pixels (ob-

jects).

The first step to consider is computing the optical flow

field. Our current model is based on the algorithm by Nord-

berg and Farneback [13] for dense optical flow computa-

tion – in section 2, considerations about the use of dense or

sparse algorithms will be made. Once the optical flow field

is available, we estimate FoE locations for the optical flow

vectors – this is a key step to our motion analysis approach

and will be detailed in section 3. The proposed idea for the

estimation of FoE points is to find the intersections of ev-

ery pair of optical flow vectors within a pair of frames from

a video sequence. Clustering of the resulting intersections

and a decision rule are then necessary to determine the FoE

location for the environment, which corresponds to egomo-
tion, and for any moving objects that may be present in the

scene.

2. Optical Flow Estimation

The image registration technique proposed by Lucas and

Kanade [8] shows that it is possible to use the spatial in-

tensity gradient to optimise the search for the position that

yields the best match between a pair of images. This is par-

ticularly important when dealing with optical flow. In mo-

tion analysis, the optical flow field is the distribution of mo-

tion vectors, whose magnitudes mean the apparent veloc-

ity and whose directions indicate the relative trajectory be-

tween moving objects and the viewer.

Let us first consider image registration techniques as

the mathematical foundation for optical flow understanding

when dealing with two consecutive frames of a video se-

quence. Each pixel at the first frame possibly corresponds

to a specific pixel at the second frame, as shown in figures 1

and 2. Figure 1 shows two consecutive frames of the opti-

cal flow input.avi video sequence, in which a moving car is

followed by the camera [17], while figure 2 shows the cor-

responding optical flow field computed by the algorithm by

Lucas and Kanade (the first frame is the reference for the

optical flow vectors). Each optical flow vector shows the es-

timated movement for its corresponding underlying pixel.

In figure 2 one can clearly notice that the vast majority of

optical flow vectors are due to the camera translation to the

right, which results in apparent background image transla-

tion to the left.

One of the assumptions in computation of optical flow is

that the brightness of an image feature does not change be-

tween frames, i.e. if E (x, y, t) is the brightness of a given

pixel at time t, its first partial derivative in time should be

zero, as follows:

Figure 1. Two consecutive frames of the opti-
cal flow input.avi video sequence in which a
moving car is followed by the camera [17].

∂E

∂t
= 0. (1)

Equation 1 can be rewritten as a function of the bright-

ness gradient, leading to equation 2:

∂E

∂x

∂x

∂t
+

∂E

∂y

∂y

∂t
+

∂E

∂t
= ∇ET · �v = 0, (2)

where �v = (vx, vy, 1) =
(

∂x
∂t ,

∂y
∂t , 1

)
is the motion vector

for a single point or region Ω within an image and ∇ET is

the spatio-temporal brightness gradient of the same region.

According to Nordberg and Farneback [13], there is no

unique solution for �v in equation 2. A possible solution for

this equation would involve a constraint, say ∇E = 0, and

considering a region Ω where �v could be assumed constant.

Therefore, the local mean value over Ω carries all the spatio-

temporal information of the object’s orientation, as follows:

⎡
⎣
∫

Ω

p(x) (∇Ex) (∇Ex)
T
dx

⎤
⎦ · �v = 0, (3)

where p is a Gaussian function and the first term in the mul-

tiplication is a second-moment matrix derived from∇E, the

so-called structure tensor.
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Figure 2. Optical flow field from matching
points of the frames in figure 1 computed
with the algorithm by Lucas and Kanade.

Horn and Schunk [6] also suggest an additional smooth-

ness constraint in which∇2
(
∂x
∂t

)
= ∇2vx and ∇2

(
∂y
∂t

)
=

∇2vy (the Laplacians of velocity components) must be min-

imised.

2.1. Dense Optical Flow

Horn and Schunk’s algorithm and also Nordberg and

Farneback’s algorithm consider an m×n window within the

image to estimate the optical flow at its central point. There-

fore, a uniformly sampled grid of points with their respec-

tive optical flow vectors is obtained. Figure 3 shows such a

dense optical flow field, in which each vector connects the

grid point to the calculated position for that same point in

the consecutive frame. The use of dense optical flow in fig-

ure 3 clearly shows that there are noticeable differences in

motion between object and background.

Dense optical flow may be more sensitive to the aperture

problem, i.e. more prone to select edges from straight line

segments in the input video sequence, which will result in

the computation of ambiguous motion. Also, rigid moving

objects that are larger than the considered analysis window

may reflect in noisy components in the optical flow field,

requiring a multiscale approach do be dealt with. However,

the use of dense optical flow favours the analysis of opti-

cal flow vectors as stochastic processes. The static locations

of flow vectors obtained in the dense approach do not de-

pend on any tracking algorithm and ensure their behaviour

as random variables for the stochastic process at time t.
The experiments reported in this paper were based on

dense optical flow in order to model motion as a stochas-

tic process, making it possible to use Independent Compo-

nent Analysis [7] for motion classification and segmenta-

tion in future work, when we plan to work with optical flow

vectors from two different observation points – right and

Figure 3. Dense optical flow field for the
frames in figure 1 computed with the algo-
rithm by Nordberg and Farneback.

left frames acquired from a stereo vision system, for ex-

ample. The technique that involves estimation of the focus

of expansion reported here is a preliminary approach to the

problem.

2.2. Sparse Optical Flow

The most noticeable difference when dealing with sparse

optical flow is the use of interest point detectors before com-

puting the optical flow field. Figure 2 already showed an ex-

ample of an sparse optical flow field in which the Harris

interest point detector [5] was used to select which pixels

within the image are those whose information is more rele-

vant, and the optical flow field was computed using a multi-

scale version of Lucas and Kanade’s algorithm [2]. This ap-

proach ensures greater robustness to the aperture problem,

reducing noisy components. The sparse optical flow com-

putation approach reduces wrong estimations of flow vec-

tors when frames from the video sequence under analysis

have a relevant proportion of homogeneous regions.

3. Focus of Expansion Estimation

The focus of expansion (FoE) corresponds to Gibson’s

Dynamic Ambient Optical Array [4], which is a single point

in space where all the flow vectors should converge. Its main

uses in vision applications are the estimation of the time-to-

impact (TTI) in visual navigation and the 3D reconstruc-

tion of the environment. There are three usual approaches

to FoE estimation in the literature [12]: discrete, differen-

tial and least-squares, all of them yielding good results for

pure translational motion.

This papers adopts the differential approach, since our

aim is to estimate the focus of expansion from the opti-

cal flow field. The differential approach is more robust, but
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computationally heavy, as a consequence of not perform-

ing any least-squares minimisation [15].

The focus of expansion estimation plays an important

role in motion segmentation. Our hypothesis is that it is pos-

sible to classify all optical flow vectors within the optical

flow field as belonging to the background (environment) or

to independent moving objects, from the estimated FoE, us-

ing a simple rule:

“If a flow vector belongs to the environment, its

backwards line segment should cross the FoE.”

In this way, it seems to be possible to estimate all egomo-
tion components for pure translation. Considering the gen-

eral assumption that the environment is static and also as-

suming that the majority of pixels within an image frame

represents the environment, it is possible to argue that the

majority of flow vectors from a dense optical flow field

are egomotion components due to camera translation. From

these assumptions, it is possible to state the following:

1. For every pair of optical flow vectors, there may be

an associated FoE. If there is not, one of the optical

flow vectors is related to an independent moving ob-

ject within the image frame.

2. FoE candidates originated from two environmental op-

tical flow vectors will be concentrated within an small

area in space, whose variational width will be a func-

tion of noise on the optical flow field computation due

to numerical approximations.

3. FoE candidates originated from mixed optical flow

vectors (one from the environment and one from an in-

dependent moving object), or from two optical flow

vectors from independent moving objects, will re-

sult in sparsely and randomly distributed locations in

space.

Therefore, it is assumed that the great majority of calcu-

lated FoE candidates will lie within a small area in space. A

simple histogram analysis could inform precisely where the

largest concentration of candidates lies. However, FoE can-

didates can be distributed across the infinite 2D space and

computing such a histogram would be computationally in-

feasible. Therefore, clustering the resulting FoE candidates

is necessary. Using a clustering approach, one can infer that

the centroid of the cluster with the largest number of sam-

ples is the most likely FoE for the environment.

3.1. Naı̈ve Estimation

A first approach to the focus of expansion estimation is

to naı̈vely consider some a priori information about the op-

tical flow vectors. If at least three of them are known to be

from the environment, they can be simply triangulated into

a small region and their average location will be consid-

ered the FoE. This approach works fine for simple video se-

quences with pure translational motion, but relies on a pri-
ori information.

3.2. Clustering by K-means

If no a priori information should be used, a possible

solution is to perform clustering on the estimated FoE ar-

ray. The K-means technique [9] can be used to split an

array with n samples (X0, X1, . . . , Xn) into m clusters

(C0, C1, . . . , Cm) whose total squared energy is minimal,

as follows:

Energy = argmin
m∑
i=1

∑
Xj∈Ci

‖ Xj − μi ‖2, (4)

where Xj is the jth sample and Ci is the ith cluster with cen-

troid μi.

The most noticeable disadvantage in using K-means to

cluster the FoE candidates is the need of a priori informa-

tion about the number of clusters m. In most general cases,

this information is not available.

4. Experimental Setup

After dense optical flow field computation, the first step

is to count the total number of optical flow vectors that are

parallel to the x or y axes. If the majority of optical flow

vectors is parallel to one of these axes, it is inferred that the

FoE lies in the positive or negative infinity for x or y, de-

pending on the case. The second step is to count the num-

ber of parallel vectors lying in the same direction. This step

informs whether the FoE lies at the positive or negative in-

finity for x or y. These two steps can be merged into a sin-

gle step if a directional angle histogram is computed and

the majority of directional angles lies within a small region

of the histogram. However, this procedure is computation-

ally more expensive than the previous two separate steps.

In both cases, we considered that two vectors are still

considered parallel if they differ by a small value ε from

each other. This approximation compensates for numeri-

cal errors in the optical flow field computation and yields

good approximations for FoE candidates that lie at infin-

ity. If all cases above do not apply, this implies that the FoE

is at a finite location in 2D space and this is the case in

which FoE estimation must take place. The model was im-

plemented using OpenCV and the experiments were con-

ducted using the optical flow input.avi video sequence [17].

Ground-truth data was obtained by counting correlated and

uncorrelated optical flow vectors frame by frame.
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5. Results

The naı̈ve estimation used locations known to be back-

ground a priori, namely the coordinates (160, 160), (320,

560) and (320, 160). For the first 50 frames of the opti-

cal flow input.avi video sequence, the average error rate for

the background was 13.8% and the average error rate for ob-

jects was as high as 90%. This large average error for ob-

jects led us to notice that if there are homogeneous regions

in the frame (such as the sky in the optical flow input.avi

video sequence), there will be no optical flow within these

regions.

Since the approach being used was naı̈ve, it was possible

to deal with the sky region by labelling it a priori as back-

ground. By doing this, the average error rate for the back-

ground went down to 8.7% and the average error rate for

objects went down to about 74%. A more careful observa-

tion showed that the optical flow input.avi video sequence

yielded significantly small optical flow vectors in the ma-

jority of its frames – a consequence of having a camera fol-

lowing the car at low speed – which seemed to be the main

reason for such a large average error rate for the object. Us-

ing another video sequence, Office left.avi [11], with less

camera movement and much more significant object trans-

lation – therefore resulting in larger optical flow vectors –

yielded an average error rate for the background of 12%

and an average error rate for the object of 22.4%, confirm-

ing our hypothesis.

Finally, the K-means clustering was applied to the opti-

cal flow input.avi video sequence. Since there is no a pri-
ori information about the spatial location of the FoE for ev-

ery pair of optical flow vectors, the number of clusters had

to be determined empirically and was set to seven. Figure 4

shows the spatial distribution of the estimated FoE candi-

dates after clustering, where the x and y axis represent spa-

tial coordinates in pixels.

In figure 4, the location most likely to be the FoE is the

centroid of the cluster with the largest sample density. In

this case, the FoE was considered to lie in coordinates (0,

250000), which is the centroid of the yellow cluster. In our

implementation, this result corresponds to an FoE at pos-

itive infinity in x, which is coherent with the motion ob-

served in the corresponding video sequence. The K-means

clustering approach yielded an error rate of 5.9% for the

background and 80% for objects, not dealing with the ho-

mogeneous sky region problem. After filtering the sky re-

gion using a priori information, the error rate for the back-

ground dropped to 5% and the error rate for objects dropped

to 30%.

No K-means clustering was necessary in the experiments

with the Office left.avi video, due to the a priori informa-

tion that no background movement, i.e. camera movement,

was present.

Figure 4. Spatial distribution of FoE candi-
dates. The cluster with highest sample den-
sity lies in coordinates (0, 250000), which was
considered the FoE.

6. Conclusions

The preliminary results shown in this paper, despite be-

ing beyond a reasonable error tolerance, show that it is

possible to classify image motion through focus of expan-

sion estimation. The large average error rates are attributed

to the simplistic approaches for motion segmentation that

were used (naı̈ve estimation and K-means clustering). There

seems to be great potential of use of the method in situa-

tions where a second camera or information about the cam-

era’s trajectory and speed is not available a priori.
Other issues, such as the interference of homogeneous

regions, lack of optical flow vectors of significant magni-

tude and presence of noise in the optical flow computation

suggest the use of adaptive clustering algorithms. Possible

adaptive clustering algorithms to be used in future investi-

gations include the GWR Neural Network [10] and Support

Vector Machines [1], avoiding the need of a priori defini-

tion of the number of clusters.

The use of the approach presented here is intended to

deal with pure camera translation and zooming when there

are much more optical flow vectors due to egomotion than to

object motion. Dealing with rotations would require the es-

timation of a focus of rotation in addition to the estimation

of the focus of expansion. It should be noticed that the cur-

rent approach is not well suited for real-time applications,

as the amount of calculations slows down considerably the

input video sequences. We expect that the use of neural net-

work approaches for clustering will result in more robust

classification for the determination of the focus of expan-

sion.
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