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Abstract

This paper describes a novel method to resample carte-
sian images to a retina-like hexagonal tessellation, con-
sisting of foveal and peripheral regions. We introduce the
inflated-hexagons model for the foveal region resampling,
which has an efficient data structure for storage and map-
ping of cortical coordinates. The integral image represen-
tation is used as intermediate step for the peripheral re-
gion log-polar resampling, which is less computationally
demanding than the simulation of Gaussian receptive fields
with varying widths. An important feature of the resulting
model is that a gap-free transition is obtained between the
near-uniformly sampled fovea and the space-variant pe-
riphery. Experiments with Principal Component Analysis
(PCA) compression of the ORL Database of Faces show
that the proposed retina-like resampling, in spite of mas-
sively reducing the amount of image data, still retains most
of the information contents of conventional cartesian image
sampling.

1. Introduction

The human retina can be subdivided topologically into

foveal and peripheral regions. The fovea is the region at the

centre of the retina, where the highest visual acuity is ob-

tained. Surrounding the fovea there is a peripheral region

whose visual acuity is increasingly lower with eccentricity

[9]. In biological vision, retinal photoreceptors are arranged

in a nearly hexagonal tessellation [3], while in computer vi-

sion image representation is often made using an uniformly

sampled 2D cartesian coordinate system.

The use of the log-polar mapping for retina-like periph-

eral resampling is well-known for its advantages in achiev-

ing rotation- and scale-invariant representations [4, 8]. A re-

view of the methods available in the literature can be found

in [3]. This paper presents a new method to resample carte-

sian images into a full retina-like representation that differs

from known models, such as the ones presented in [2] and

[5], in the sense that it has an efficient data structure for stor-

age and also that there is no sampling gap in the transition

between fovea and periphery.

The proposed model is completely described by simple

equations and does not resort to more complex methods,

such as self-organisation [1], in order to generate the tessel-

lation. The resulting data structure allows accurate and fast

mapping between retinal and cortical coordinates. Cartesian

image reconstructions from the retina-like resampling and

quantitative assessment using incremental PCA [11] com-

pression of the ORL Database of Faces [10] demonstrate

the model’s ability to preserve visual information contents.

2. The retinal model

To remap a conventional cartesian image that uses a uni-

form square tessellation to a log-polar image representa-

tion that uses a space-variant hexagonal tessellation, a data

structure consisting of two regions – the fovea and the pe-

riphery – is needed. This happens because in the foveal re-

gion there is a large amount of evenly distributed photore-

ceptors, while in the peripheral region the amount of pho-

toreceptors decreases with eccentricity. So, the model needs

distinct data structures for the fovea, which is a small area

with high photoreceptor density, and for the peripheral re-

gion, which is a larger area but with sparser photoreceptor

density.

2.1. Foveal region

In the foveal region of our model, resampling is made

with a series of concentric rings of photoreceptors, as shown

in figure 1. The first internal ring has the shape of an

hexagon and contains one photoreceptor in each of its

vertexes. The second ring, which surrounds the first one,

mostly maintains the hexagonal shape, but contains an ad-

ditional photoreceptor between vertexes, along each side of

the hexagon. As the rings grow farther from the centre of

the fovea, the number of additional photoreceptors increases

between the vertexes of the hexagon, while the hexagonal
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rings themselves start to lose more and more their origi-

nal shape and tend to become more and more circular in

shape. We have called this “the inflated-hexagons model of

the fovea”.
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Figure 1. Spatial distribution of photorecep-
tors in the inflated-hexagons model of the
fovea. Outer rings are more circular in shape,
while inner rings are more hexagonal.

The high density of sampling in the foveal region leads to

each photoreceptor having the same size of a cartesian pixel

in every ring. The foveal region of the model is specified by

the desired number of photoreceptor rings (Mf ) given by

the user. Ring radii increase in arithmetic progression and

are given by Ri = i + 1, for 0 ≤ i < Mf . In each ring i
there are 6×Ri photoreceptors.

The centre of each inflated-hexagons model photorecep-

tor is given in (x, y) cartesian coordinates, which are com-

puted according to equation 1:

x = xa + (xb − xa)
i

Mf

y = ya + (yb − ya)
i

Mf

, (1)

where (xa, ya) and (xb, yb) are given by

xa = xc +Ri

[
cos θj + (cos θj+1 − cos θj)

k
Ri

]

ya = yc +Ri

[
sin θj + (sin θj+1 − sin θj)

k
Ri

] (2)

and

xb = xc +Ri

{
cos

[
θj + (θj+1 − θj)

k
Ri

]}

yb = yc +Ri

{
sin

[
θj + (θj+1 − θj)

k
Ri

]} , (3)

for 0 ≤ k < Ri.

Equations 2 and 3 compute intermediate coordinate pairs

for hexagonal (xa, ya) and circular (xb, yb) ring shapes, re-

spectively, which are later composed into a single coordi-

nate pair (x, y) by the weighted sums in equation 1. Equa-

tion 2 yields coordinates for a perfect hexagonal ring, while

equation 3 yields coordinates for a perfect circular ring.

When these coordinates are composed in equation 1, rings

near to the centre of the fovea appear more like hexagons

and rings far from the centre appear more like circles. In

these equations, (xc, yc) represents the centre of the fovea,

and θj and θj+1 are angles between the x axis and lines con-

necting neighbour vertexes of the base hexagon to the cen-

tre, which are given by:

θj =
π

3
j, (4)

with 0 ≤ j < 6.

Cartesian visual data is remapped through bilinear inter-

polation and stored in memory as a 2D array – the cortical

image – with the first column corresponding to the first pho-

toreceptor ring, the next two columns corresponding to the

second ring, the next three to the third and so forth, follow-

ing an arithmetic progression, as indicated in figure 2. This

topological arrangement also results in each row of the stor-

age array representing wedges of π/3 rad of the foveal re-

gion.
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Figure 2. Corresponding cortical image for
the inflated-hexagons model of the fovea.
Column sections ri represent photoreceptor
rings increasingly far from the foveal centre
and rows represent photoreceptor wedges of
π/3 rad.

Coordinates in the foveal image are given in terms of ring

and sector (r, s) and have corresponding coordinates (m,n)
in the cortical image, where m is the cortical column coor-

dinate and n is the cortical row coordinate. Retrieving vi-

sual data from the cortical array while searching the foveal

image is straightforward. Equation 5 shows how foveal co-

ordinates (i, s) can be computed from cortical coordinates

(r, c):
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i =
⌈√

8c+1−1
2

⌉

s = i
(
r − 1

2

)− i2

2 + c

, (5)

where (�.�) denotes the ceiling function for rounding.

Equation 5 is derived from the arithmetic progression re-

sulting from the cortical image arrangement, as shown in

figure 2. The value of i is given by the largest value of c that

satisfies the condition i −∑c
j=0 j ≥ 0. Therefore, solving

Gauss’s equation for the sum of the elements of an arith-

metic progression yields the relationship between i and c.
Equation 6 shows how to compute the inverse mapping,

obtaining (r, c) as a function of (i, s):

c = i2−i
2 + mod{s− 1, i}

r = mod{3(i2 − i) +
⌊
n−1
m

⌋
, 6}

, (6)

where mod{a, b} is the remainder of the integer division

a/b and �.� denotes the floor function for rounding.

2.2. Peripheral region

In the periphery, where a log-polar model is used, pho-

toreceptor rings have a perfect circular shape and a constant

number of photoreceptors per ring, but photoreceptor size

starts to increase as a function of the distance to the foveal

centre. The total size of the peripheral region is provided by

the user in terms of the desired number of rings (Mp).

In order to keep coherence at the border between the

fovea and the periphery, the number of sectors in the pe-

ripheral region is the same as in the last ring of the foveal

region. Therefore, the number of sectors in the periphery is

given by N = 6 ×Mf and the half angular resolution can

be computed as:

θ =
π

N
. (7)

The photoreceptor radius ri is related to the ring radius

Ri according to:

ri = Ri sin θ. (8)

As the minimum desired size for a photoreceptor is

equivalent to one cartesian pixel (r0 = 1/2), the innermost

peripheral ring radius R0 is given by:

R0 =
1

2 sin θ
(9)

Ring radii increase in a geometric progression given by:

Ri = bRi−1, (10)

where b is computed as follows:

b =
sin θ(sin θ +

√
2 cos θ + 1) + cos θ

(cos θ)2
. (11)

Finally, the cartesian coordinates of each photoreceptor

centre is given by:

xi,j = xc +Ri cos[θ(i+ 2j)]

yi,j = yc +Ri sin[θ(i+ 2j)]
, (12)

for 0 ≤ i < Mp and 0 ≤ j < N .

Figure 3 shows the resulting space-variant tessellation

with M = 18 rings and N = 48 sectors. Notice that the fi-

nal organisation consists of spiral sectors and rings.
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Figure 3. Peripheral log-polar hexagonal tes-
sellation with M = 18 rings and N = 48 sec-
tors. The first spiral sector is indicated by
black circles.

One of the most important features of the proposed

retina-like model is that there is no sampling gap between

fovea and periphery, unlike other models available in the lit-

erature [5]. Notice that the centre of the image is lost if a

purely log-polar structure is used, as shown in figure 3.

2.3. Efficient implementation

Photoreceptor values in the peripheral region can be ap-

proximated by the average of cartesian pixel values within

the square-shaped areas shown in figure 4.

An efficient implementation to compute the peripheral

log-polar mapping can be made using the integral image

representation introduced in [12]. The integral image at lo-

cation (x, y) contains the sum of the pixel values above and

to the left of (x, y), as follows:

ii(x, y) =
∑

m≤x,n≤y

i(m,n), (13)

where ii(x, y) is a pixel of the integral image and i(m,n) is

a pixel of the original image.
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Figure 4. Square photoreceptor approxima-
tion for the peripheral log-polar tessellation
in figure 3.

The integral image can be computed in a single pass over

the original image with the following recurrences [12]:

s(x, y) = s(x, y − 1) + i(x, y)

ii(x, y) = ii(x− 1, y) + s(x, y)
, (14)

where s(x,−1) = 0 and ii(−1, y) = 0.

The most relevant property of the integral image repre-

sentation is that the sum of pixel values within a rectangle

of any size in the original image can be computed in con-

stant time using the values of the corresponding four cor-

ners in the integral image, as shown in figure 5.

� �

� �

(x1, y1) (x2, y1)

(x1, y2) (x2, y2)

Figure 5. Integral image: the sum of the pixel
values within the grey rectangle can be com-
puted as ii(x1, y1) − ii(x2, y1) − ii(x1, y2) +
ii(x2, y2).

The sum of pixel values in the square areas shown in fig-

ure 4 can be very efficiently computed with the use of look-

up tables containing their corner coordinates:

x1 = xi,j − ri

y1 = yi,j − ri

x2 = xi,j + ri

y2 = yi,j + ri

(15)

Therefore, average photoreceptor values are obtained by:

p =
ii(x1, y1)− ii(x2, y1)− ii(x1, y2) + ii(x2, y2)

(x2 − x1)(y2 − y1)
(16)

3. Experiments

In our initial experiments, we have resampled cartesian

images of 100×100 pixels from the ORL Database of Faces

[10] with our retina-like model. Ten photoreceptor rings in

the fovea and 16 in the periphery were used in the struc-

ture of the model, resulting in a total of 1290 photorecep-

tors. When compared to the original cartesian representa-

tion, this number of photoreceptors represents a reduction

in storage space in excess of 87%.

Figure 6 shows the example of an original image and its

respective retina-like resampled output reconstruction for

an image from the ORL Database of Faces. The data re-

duction seems extremely lossy when a comparison is to be

made between the original and reconstructed images. How-

ever, the reconstructed image obtained is still reasonably in-

telligible, demonstrating that the “essential information” of

the original image was preserved. The main advantage of

this fact is that image processing methods can be executed

faster in the cortical map domain because the amount of

data to be processed is reduced.

(a) (b)

Figure 6. ORL Database of Faces example: (a)
original image; (b) retina-like resampled im-
age reconstruction.
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It is important to keep in mind that such retina-like rep-

resentation is useful in applications that involve robotic vi-

sion, in which cameras are able to move with respect to the

environment. In these applications, it is necessary to centre

the high-resolution fovea of the model at the current object

of interest that needs to be analysed. The low-resolution pe-

riphery in this kind of application is used mostly to shift the

focus of attention of the system [7].

(a)

(b)

Figure 7. PCA of the ORL Database of Faces:
(a) eigenvalue plot; (b) cumulative eigenvalue
plot. The blue plots correspond to the carte-
sian image domain and the red plots corre-
spond to the retinal image domain.

In order to verify if the main information contents was

preserved after the retina-like resampling, we performed

incremental PCA [11] on the complete ORL Database of

Faces. PCA – also known as the Hotteling Transform or dis-

crete Karhunen-Loeve Transform in the context of image

processing – provides optimal image reconstruction in the

least-squares sense [6]. Therefore, we refer here to “amount

of information” or “main information” as the eigenvalues

obtained through PCA.

In figure 7a, it is possible to visualise that the amount

of information for the retina-like representation is similar to

that of the cartesian representation, as the number of eigen-

values obtained is almost the same. Figure 7b shows a graph

for the cumulative eigenvalue plot, where one can observe

that information contents grows even faster for the retina-

like mapping.

An additional experiment was conducted in order to

demonstrate some of the topological properties of the pro-

posed retina-like resampling. Figure 8 shows the cortical

data structure and the reconstructed image in contrast with

the original cartesian image. In this example, it is possible

to notice that circular regions are remapped to horizontal

lines in the cortical periphery and that corners with at least

π/3 rad are also remapped to horizontal lines in the corti-

cal fovea of the data structure.

(a)

(b) (c)

(d)

(e)

Figure 8. Topological properties: (a) retinal
model superimposed to an image; (b) origi-
nal image patch; (c) retina-like resampled im-
age patch reconstruction; (d) cortical fovea;
(e) cortical periphery.
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4. Conclusions

We have presented a model for retina-like resampling of

cartesian images composed of a high-resolution fovea and

a space-variant log-polar periphery. Important features of

the model are the gap-free transition between fovea and pe-

riphery, and the use of simple mathematical equations to de-

fine the mapping between cartesian and retina-like domains.

The model provides a coherent cortical map representation

for both foveal and peripheral region, which can use an effi-

cient implementation based on the integral image represen-

tation.

Experiments using incremental PCA demonstrate that

our model, despite massively reducing the amount of im-

age data, still preserves most of the information contents of

the ORL Database of Faces. This is also observed through

visual comparison of original cartesian images and the im-

ages resampled using the model.

Future work includes investigation of specific character-

istics of the model, in special its topological properties and

behaviour in the frequency domain. It should be noted that

our model has the advantage of presenting periodicity in one

of the dimensions of both cortical images – foveal and pe-

ripheral – which presents potential advantages for comput-

ing its Fourier Transform.

We also intend to investigate the well-know properties

of log-polar representations to achieve rotation- and scale-

invariance for feature extraction in content-based image re-

trieval and robotic vision applications. The model seems to

be particularly interesting to be used in conjunction with a

visual attention mechanism [7], where the salient visual lo-

cations should be centred on the fovea.
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