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ABSTRACT
Image retargeting has seen many applications in areas such
as content adaptation for small displays and thumbnailing
for image database browsing. Most retargeting methods,
however, are too expensive computationally to achieve fast
performance on common desktop systems. This work ad-
dresses the problem of fast automatic thumbnailing for im-
age browsing. A simple approach of automatic thresholding
saliency maps and cropping using bounding box extraction
is presented. Eight of the fastest saliency detectors in the
literature and three automatic thresholding methods are as-
sessed using precision, recall, F-score and execution time
on the MSRA1K dataset. The results show that the ap-
proach is computationally efficient and adequate for fast au-
tomatic image thumbnailing. In particular, saliency detec-
tion with difference to random color samples (RS) thresh-
olded by Rosin’s method achieved the best trade-off between
execution time and F-score.
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1. INTRODUCTION
Adaptation of image content to fit certain size restric-

tions, also known as image retargeting, has been used in
applications such as image/video viewing on small screens
[4], thumbnailing for image database browsing [17] and se-
lective focus of operator attention in surveillance videos [7].
Although being simple and fast, retargetting using uniform
resizing is usually not effective, as it does not consider the
different importance of the content in each and every region
of the image – a very significant aspect, as information loss
or distortion is inevitable in this process and, in most cases,
integrity preservation of important content is desirable. For
this reason, image retargeting algorithms compute an impor-
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tance map, which indicates the importance of each location
of the image, in order to preserve their contents accordingly.

Several strategies have been adopted in importance map
computation, most notably visual saliency, face detection
and text detection [4]. In this work, only visual saliency is
considered, as it is based exclusively on low-level character-
istics and consequently adequate for general images – unlike
face and text detection which are application specific. From
the importance map, many spatial manipulations may be
performed for retargeting. Methods such as local warping
[11] and seam carving [2] resize by preserving important re-
gions while distorting or completely removing the remaining
regions. Because unimportant regions can occur in any loca-
tion, these approaches might alter the relationship between
objects in the image and compromise scene comprehension.
In applications in which these distortions are undesirable, a
combination of rescaling and cropping can be employed.

Many, if not most, image retargetting methods are com-
putationally expensive – some take several seconds [11] to
process a single image. Considering this, this work addresses
the problem of fast automatic image cropping for thumbnail-
ing. Since image browsers must show several thumbnails at a
time, fast mechanisms for their computation are needed. In
this work, importance maps are computed using fast saliency
detection, followed by automatic thresholding. The impor-
tance maps are used for retargeting based on cropping, for
simplicity and speed. Eight saliency detectors among the
fastest in the literature, as well as three automatic thresh-
olding methods are assessed for this task. Quantitative as-
sessment is made in terms of precision, recall, F-score and
execution time on the MSRA1K dataset.

2. RELATED WORK
Chen and colleagues [4] proposed an image retargeting me-

thod for visualization in small displays. Their method inte-
grates both bottom-up (i.e. color, intensity and orientation
contrasts) and top-down (i.e. face and text detection) visual
attention. Suh and colleagues [16] assessed the effectiveness
of automatic thumbnail cropping through user interaction
experiments on recognition and visual search tasks, finding
strong evidence supporting the effectiveness of thumbnails
based on visually salient regions.

Image retargetting was also explored in the context of
video content, for instance, in surveillance applications [7],
in which multiple cropping windows are desired, as well as
their smooth trajectory.



Marchesotti and colleagues [12] proposed a saliency de-
tection framework based of visual similarity applied to the
problem of image thumbnailing. Their method has two
stages: saliency detection and thumbnail extraction. The
former is formulated as a co-saliency model based on visu-
ally similar images from a dataset, and is shown to outper-
form other three state-of-the-art methods in precision, recall
and F-score. The latter is formulated as a segmentation me-
thod (Grab-Cut) initialized with the saliency map from the
first stage. The authors state that this stage overcomes a
drawback of the saliency detectors assessed, i.e. these do not
account for the contours of the salient objects. We show that
this is not entirely true for more recent saliency detectors.

3. THUMBNAIL CROPPING BASED ON
VISUAL SALIENCY

3.1 Fast Saliency Detection
Eight saliency detectors among the fastest in the literature

were assessed for importance map computation. They are
briefly described next, maintaining the notation of the orig-
inal papers when possible. The criterion for selection was
to be listed among the fastest in the extensive benchmark by
Borji and colleagues [3] or having comparable execution time.

Luminance Contrast (LC). This method computes the
saliency of a pixel as its luminance contrast to the rest of
the image. To accelerate computation, the contrast between
each luminance value is computed instead and attributed to
pixels with correspondent luminance [18]. Given an image
I ∈ Rm×n, the saliency map output by LC is defined as:

SLC(p) =

255∑
i=0

fiD(p, i), ∀p ∈ I, (1)

where lp is the luminance of the pixel p, fi is the frequency
of the luminance level i and D(p, i) is the map of luminance
contrasts ||lp− li||, which can be computed in constant time.

Spectral Residual (SR). This method differs from most of
the others due to its frequency-domain formulation. Given
an image I ∈ Rm×n, its log-spectrum representation L(f) is
the log of the magnitude of its Fourier Transform:

L(f) = log(Re(F [I])). (2)

Saliency is then estimated as the spectral residual R(f), that
is, the difference between the input image and its average fil-
tered version, both in their log-spectrum representation [9]:

R(f) = L(f)− hn(f) ∗ L(f), (3)

where hn is simply an averaging filter. The saliency map in
the spatial domain is obtained by the Inverse Fourier Trans-
form, which is squared to indicate the estimation error and
smoothed by a Gaussian filter Gσ for better visual quality:

SRS(I) = Gσ ∗ F−1[exp(R(f) + P (f))]2, (4)

where P (f) = Im(F [I]) indicates the phase spectrum of the
image. Before saliency map computation, the input image
is downsampled to 64 pixels in width or height, to approxi-
mate the limited spatial scale of pre-attentive human vision.

Frequency-tuned (FT). This method operates on a sim-
ple premise: the average color of the image is more similar

to pixels from the background than to salient pixels. Thus,
the saliency of a pixel can be estimated from its color dis-
tance to the average color of the image. Given an image
I ∈ Rm×n, the saliency map output by FT is defined as [1]:

SFT(p) = ||Iµ − IG(p)||, ∀p ∈ I, (5)

where Iµ is the average color of the image and IG(p) is the
color of the pixel p on the Gaussian blurred version of I.

Histogram-based Contrast (HC). This method is basi-
cally an improvement of LC, which is extended to consider
color difference instead of luminance contrast. This is made
computationally viable through color quantization and re-
moval of less frequent colors. Given an image I ∈ Rm×n,
the saliency map output by HC is defined as [5]:

SHC(p) =

N∑
i=1

fiD(cp, ci), ∀p ∈ I, (6)

where cp is the color of the pixel p, N is the number of col-
ors, fi the bin of color ci in the color histogram of I and
D(cp, ci) is the map of color distances.

Sparse Sampling and Kernel Density Estimation
(FES). Given an image I ∈ Rm×n, the saliency map output
by FES is defined as [14]:

SFES(p, r,N) = AC ∗ [PNr (1|f, p̄)]α, ∀p ∈ I, (7)

where r is the radius of the circular sampling area around
the pixel p, N is the number of samples in this area, AC
is a circular averaging filter, Pnr (1|f, p̄) is the probability
of the pixel belonging to center (as opposed to surround)
given a feature vector f and that p is located at p̄, α is
an adjustable attenuation factor. Before saliency map
computation, I is rescaled to 171× 128 pixels.

Image Signature (IS). This method is based on the Dis-
crete Cosine Transform (DCT). Given an image I ∈ Rm×n,
the saliency map output by IS is defined as [8]:

SIS(I) = g ∗
∑
i

(Īi ◦ Īi), (8)

where g is a Gaussian kernel, i is the ith color channel of
I, ◦ is the Haddamard product operator and Ī is the in-
verse DCT of the image signature, which is defined as the
sign component of the DCT of the input I. The input image
is rescaled to 64×48 pixels before saliency map computation.

Soft Image Abstraction (SIA). Proposed by Cheng
and colleagues [6], this method decomposes the input
image into perceptually homogeneous components using a
Gaussian Mixture Model and determines the salient regions
by integrating its color contrast to the other components
and the spatial distribution of colors.

Difference to Random Color Samples (RS). This me-
thod describes the saliency of each pixel as its color differ-
ence to a random sample of other pixels. Given an image
I ∈ Rm×n, the saliency map output by RS is defined as [10]:

SRS(p) =
∑
∀pr∈IR

||I(p)− I(pr)||, ∀p ∈ I, (9)



where IR is a set of random pixels from I. The size of IR is
set to three pixels and the input is resized to 25% of its orig-
inal size to accelerate computation. As image thumbnailing
does not require as much accuracy as salient region segmen-
tation, the joint upsampling step in the original method was
replaced by Gaussian filtering to further improve execution
time.

3.2 Adaptive Saliency Map Thresholding and
Thumbnail Extraction

Importance maps computed using saliency detection are
thresholded so that the connected components of the salient
regions can be extracted. Three simple automatic threshold-
ing methods were considered, Otsu and Rosin for being well-
known and having complementary characteristics, Achanta
for being usual in salient region segmentation [1, 3]:

• Otsu: Considering that the image is bimodal (two
classes), this method determines the threshold that
minimizes their intra-class variance [13].

• Achanta: Proposed by Achanta and colleagues [1] for
saliency map thresholding, this method defines the
threshold as twice the average saliency of the image.

• Rosin: Considering that the image is unimodal, this
method considers a line from the peak of the image his-
togram to its first empty bin. The threshold is selected
as the value for which the perpendicular distance be-
tween this line and the histogram is maximum [15].

Once the saliency map is computed and thresholded, the
bounding box of the largest connected component is selected
as cropping window.

4. EXPERIMENTS AND DISCUSSION
The assessment of the saliency detectors and automatic

threshold algorithms was based on precision, recall, F-score
and execution time using the MSRA1K dataset [1], which
contains 1000 images with diverse unambiguously salient ob-
jects in a variety of scenes. For each image there is a cor-
responding ground-truth image with the salient regions la-
beled (by human subjects) with bounding boxes – considered
as the ideal cropping based on visual saliency. The experi-
ments were run on an Intel Core i7-860 2.80 GHz CPU with
4 GB RAM, using MATLAB.

A qualitative assessment can be made analyzing Figure
1, whereas the quantitative assessment of the methods is
summarized in Table 1. The three top performances are in-
dicated in bold. FES is the most accurate of the assessed
methods, achieving the first (0.7230) and third (0.6690) high-
est F-scores when using Achanta’s and Rosin’s thresholding
methods, respectively. The second highest F-score (0.6742)
results from RS thresholded by Rosin’s method. No thresh-
olding method performed consistently better than the others.

Although FES has the best accuracy performance, it has
the slowest execution time (97.7 ms per image), as indicated
in Table 2. On the other hand, the fastest saliency detectors,
SR and LC, have the worst F-scores, 0.51 and 0.47 respec-
tively. This suggests that what is desirable is a trade-off
between execution time and F-score, as can be seen more
clearly in Figure 2, where points closer to the bottom right
have the best combination of short execution time and high
F-score. The method with the best trade-off is RS, which
takes on average 20.7 ms per image, with an F-score of 0.67.

Table 1: Assessment of the saliency detectors on the
MSRA1K dataset for each of the automatic thresh-
olding algorithms considered. The images of the
dataset have a typical size of 400 × 300 pixels.

Threshold Precision Recall F-score

LC
Achanta 0.3585 0.3278 0.3512

Otsu 0.3712 0.3741 0.3656
Rosin 0.4532 0.8776 0.4672

SR
Achanta 0.3958 0.3604 0.3875

Otsu 0.4859 0.5268 0.4820
Rosin 0.5014 0.7867 0.5113

FT
Achanta 0.4029 0.3314 0.3927

Otsu 0.4955 0.4500 0.4864
Rosin 0.5787 0.6562 0.5769

HC
Achanta 0.6170 0.5828 0.6084

Otsu 0.6362 0.6859 0.6327
Rosin 0.4938 0.8166 0.5042

FES
Achanta 0.7509 0.5685 0.7230

Otsu 0.5215 0.3863 0.4990
Rosin 0.6628 0.8632 0.6690

IS
Achanta 0.4088 0.3367 0.3966

Otsu 0.6288 0.7200 0.6277
Rosin 0.5555 0.8252 0.5650

SIA
Achanta 0.6736 0.6186 0.6648

Otsu 0.6157 0.5764 0.6072
Rosin 0.6374 0.8130 0.6421

RS
Achanta 0.5528 0.4037 0.5318

Otsu 0.5378 0.4458 0.5226
Rosin 0.6767 0.7492 0.6742

Note: saliency detector implementations from the original au-

thors or Borji and colleagues’ benchmark [3] were used.

LC SR FT HC

FES SS GC RS

LC SR FT HC

FES SS GC RS

Input images

Figure 1: Thumbnails cropped using saliency detec-
tion and automatic thresholding. For the selected
examples, LC and SR tend to undercrop, while FES
and IS tend to overcrop. FT, SIA and RS output
the most visually pleasing thumbnails.



Table 2: Average execution time and F-score on the
MSRA1K dataset. Only the best performing thresh-
olding method for each detector was considered.

LC3 SR3 FT3 HC2 FES1 IS2 SIA1 RS3

Time (ms) 11.9 10.5 61.6 16.9 97.7 20.1 61.8 20.7

F-score 0.47 0.51 0.58 0.63 0.72 0.63 0.66 0.67
1Achanta, 2Otsu, 3Rosin.
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Figure 2: Trade-off between F-score and execution
time of the assessed saliency detectors. The closer to
the bottom right, the better the resulting trade-off.

5. CONCLUSIONS
This paper presented an assessment of fast saliency detec-

tors for importance map computation in terms of precision,
recall, F-score and execution time – with promising results
for automatic image thumbnailing. In particular, saliency
detection based on difference to random color samples (RS)
thresholded by Rosin’s method presented the best trade-off
between execution time (20.7 ms/image) and F-score (0.67).

The main contributions of this paper are: (i) showing that,
unlike suggested by previous work [12], saliency-based im-
portance maps can be used for thumbnailing without addi-
tional segmentation algorithms, due to the accuracy of re-
cent saliency detectors, and (ii) providing an assessment of
fast saliency detectors in image thumbnailing, considering
their bounding box accuracy as well as execution time. Fu-
ture work includes strategies for grouping multiple salient
regions into a cropping window and assessing the feasibility
of the chosen saliency detectors to parallelization.
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