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Fig. 1. From the input image (a), an approximate saliency map (b) is computed using the color distance from each pixel to a sample of random
pixels from the same image. The sample size is kept small and is taken from a downsampled version of the input image in order to reduce runtime –
the resulting saliency map, however, is noisy. This noisy approximation can be denoised and upsampled into a full-resolution saliency map (c) through
joint upsampling using the original resolution input as guide image. Upsampling of a lower resolution approximation is considerably faster than the
direct computation of a full-resolution saliency map.

Abstract—The human visual system employs a mechanism
of visual attention, which selects only part of the incoming
information for further processing. Through this mechanism,
the brain avoids overloading its limited cognitive capacities.
In computer vision, this task is usually accomplished through
saliency detection, which outputs the regions of an image that
are distinctive with respect to its surroundings. This ability
is desirable in many technological applications, such as image
compression, video quality assessment and content-based image
retrieval. In this paper, a saliency detection method based on
color distance with sparse random samples and joint upsampling
is presented. This approach computes full-resolution saliency
maps with short runtime by leveraging both edge-preserving
smoothing and joint upsampling capabilities of the Fast Global
Smoother. The proposed method is assessed through precision-
recall curves, F-measure and average runtime on the MSRA1K
dataset. Results show that the method is competitive with state-
of-the-art algorithms in both saliency detection accuracy and
runtime.

Keywords-Saliency detection; Fast Global Smoother; Joint
upsampling; Visual attention.

I. INTRODUCTION

At any given moment, the human visual system ignores,
or at least attenuates, most of the information it receives [1].
This is done mostly through a mechanism of visual attention,
which selects only part of the incoming information for further

processing [2]. Through this mechanism, the brain avoids
overloading its cognitive capacities and is able to respond
rapidly to stimuli, even in the presence of massive quantities
of visual information. Due to this capacity of reducing the
amount of incoming visual information to a manageable rate
[3] – a highly desirable characteristic in many technological
applications – several computational models of visual attention
have been proposed in the last decade [4]. These have been
applied in areas such as image compression [5], video quality
assessment [6] and content-based image retrieval [7].

Most computational models of visual attention are based
on the concept of a saliency map – a grayscale image that
maps each location to an intensity value which is proportional
to its conspicuity (i.e. how much this location differs from
its surroundings) [8]. This is done mostly using a bottom-up
approach, that is, based on low-level features of the image
[9], in a process called saliency detection. While top-down
approaches (i.e. those which involve high level aspects like
experience and expectations) exist, they are not as explored
due to the complexity of the mental processes involved [3].

Recent approaches have achieved very accurate saliency
detection, according to a survey on several popular datasets
by Borji and colleagues [4]. Most of these methods, however,
are too slow to be used in real-time applications. For example,



among the top performing saliency detectors, according to this
benchmark, the High-dimensional Color Transform [10] and
the Dense and Sparse Reconstruction [11] approaches take on
average 4.12 s and 10.2 s, respectively, to process a 400×300
image on a Xeon E5645 2.4 GHz CPU with 8 GB RAM [4].
These runtimes are inadequate for many real-time applications,
such as adaptive video compression [5] and active robot vision
[12] – specially considering that bottom-up saliency detection
is meant to reproduce a fast, reflexive mechanism, which has
been reported to take less than 150 ms in the human visual
system [13].

This paper presents a bottom-up saliency detection method,
which computes an approximate saliency map using the color
distances of each pixel of the image to a random sample of
the other pixels. By reducing the size of the random sample,
this approximation can be computed in reduced periods of
time at the expense of increasing noise in the saliency map.
The noisy saliency map, however, can be corrected without
significant increase in runtime through a fast method of edge-
preserving smoothing based on weighted least squares (see
Fig. 1) [14] – moreover, using the full-resolution input as
guide image, it can be computed in a downsampled version of
the input and then upsampled into a full-resolution denoised
saliency map, using only a fraction of the time it would take to
compute a full-resolution saliency map directly. The proposed
method is compared to other state-of-the-art saliency detec-
tors and assessed using the MSRA1K dataset [15] through
precision-recall curves, F-measure and average runtime. The
results show that the method is competitive with state-of-the-
art algorithms in terms of saliency detection accuracy, while
achieving a relatively short runtime.

II. RELATED WORK

Computational models of visual attention first came to
prominence with the model of bottom-up attention by Itti and
colleagues [16], one of the earliest to incorporate aspects from
psychological theories, most notably Treisman and Gelade’s
Feature-Integration Theory of Attention (FIT) [17], which
claims that the process of visual attention involves integrating
low-level features of the image (e.g. orientation, color, inten-
sity). Since then, this approach has been incorporated by most
models, due to its effective results and biological plausibility.

Following the work of Itti and colleagues [16], many
different models have been proposed – a recent benchmark
listed more than 30 published since 2008 [4]. While many of
them compute saliency maps through combinations of feature
maps, most incorporate only color features (including the top
performing methods [4]), suggesting that color is the most
informative low-level characteristic in terms of saliency.

A definition of saliency in terms of global color distances
was given by Zhai and Shah [18]:

Sg(x, y) =
∑

∀(xi,yi)∈I

||I(x, y)− I(xi, yi)||, (1)

in which each pixel of the image I has its saliency Sg
computed as the sum of its color distance to all the other

pixels of the image. The computation of this function has
a complexity of O(N2) for an image with N pixels, which
turns out to be impractical for real-time applications given
the large number of pixels even for medium sized images
(e.g. 400 × 300 = 120, 000). Considering this, Zhai and
Shah compute the saliency of each color instead, which is
done in linear time with respect to the number of pixels
since the number of colors does not change with image size.
Attributing a saliency value to each pixel based on this color
saliency has a complexity of O(N). This, however, is still
computationally prohibitive considering the large number of
possible colors (i.e. 2563 = 16, 777, 216 colors for an 8-bit
RGB image), which can be larger than the number of pixels
and consequently dominate runtime. To address this, Zhai and
Shah use luminance information only. Cheng and colleagues
[19] enabled the use of color in this approach by substantially
improving the performance through quantization of the color
space (12 values per channel) and by ignoring rare colors.

Random sampling, which is at the core of the method
proposed here, has been applied to the saliency detection
problem before. It was first explored by Stentiford [20] and
later by Vikram [21]. Vikram proposed sampling pairs of
random sets of pixels and comparing their color distances.
These pairs of sets were resampled and compared repeatedly,
with the stop condition of reaching a certain number of
iterations, which was determined empirically. Another random
sampling approach [22], computes the saliency of each pixel
as the sum of the absolute differences between its intensity
and the mean intensity of random sub-windows containing it,
where the number of sub-windows was determined empirically
as 0.02×w×h for an image with w×h pixels in size. These
sub-windows have random sizes and may overlap, incurring
redundant computation.

III. PROPOSED METHOD

The proposed saliency detection method leverages a princi-
ple from random sampling algorithms, which states that is
possible to estimate features of the entire population in a
computationally inexpensive way from a small sample [23].
As most methods in the literature [24], it is assumed that
the salient object distinguishes itself from the background and
distractors with respect to color features.

Our method is composed of two stages: (i) computation of
a rough saliency map approximation through comparisons of
each pixel of a downsampled version of the input image with
a small sample of random pixels from the same image, (ii)
post-processing the result of (i) using a fast edge-preserving
smoothing method [14] for denoising and joint upsampling.
The following subsections describe these steps in more detail.

A. Color distance to random samples

First, the image is converted from RGB to the CIELAB
color space, in order to take advantage of its perceptual
uniformity (i.e. the Euclidean distance is approximately linear
with respect to human visual perception) [25]. Then, the



saliency S of each pixel of the image I is estimated as the
sum of its color distances to a random sample IR of the image,
which is different for each pixel:

S(x, y) =
∑

∀(xr,yr)∈IR

||I(x, y)− I(xr, yr)||. (2)

Eq. 2 is very similar to Eq. 1, differing only in the set of
pixels to which each pixel is compared. While in Eq. 1 this
set comprises the entire image I , a much smaller set IR is
adopted, randomly sampled from I . By keeping the size of
this sample constant, the proposed approach can be computed
with O(N) complexity, for an image I with N pixels, instead
of O(N2), as in Eq. 1.

Unlike the random sampling approach by Vikram [21], the
proposed method compares each of all image pixels to a
random sample instead of repeatedly comparing two random
samples. Using this approach, there is a clear stop condition –
the saliency estimation of the last pixel of I , without needing
to determine the number of random samples and comparisons
empirically.

Fig. 2 shows an image from the MSRA1K [15] dataset,
its saliency ground-truth and examples of saliency maps com-
puted using color distances with random samples for different
sizes (n) for the set IR. The ground-truth describes the “ideal”
output of a saliency detector for this image, that is, the regions
that are considered salient based on human visual inspection
[15].

It is possible to observe that for small values of n the
saliency map is noisy but, as n increases, it sharpens. However,

(a) Original (b) Ground-truth (c) n = 1

(d) n = 10 (e) n = 100 (f) n = 1000

Fig. 2. Examples of saliency maps computed using color differences with
random samples for different sample sizes n. The smaller the sample, the
noisier the resulting saliency map.
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Fig. 3. Runtime for the computation of a saliency map of 400×300 pixels for
different values of n, using an Intel Core i7-860 2.80 Ghz CPU. As expected,
the runtime increases linearly, but already exceeds 1 s for n approximately
equal to 100.

as can be seen in Fig. 3, the runtime also increases consid-
erably. For n approximately equal to 100, runtime already
exceeds 1 s, suggesting that, while comparison with random
samples describes saliency reasonably well, adopting higher
values of n to smooth the saliency map is inadequate for
fast saliency detection. Considering this, n = 3 is adopted
(chosen empirically) to get a fast saliency map approximation
and minimize the resulting noise using an edge-preserving
smoothing filter.

B. Joint Upsampling

Edge-preserving smoothing removes details of an image by
filtering its high-frequency components (e.g. noise, texture),
much like Gaussian filtering, but preserving edges, as they
might describe information about shape. This task is usually
accomplished by filtering not only in space but in range –
that is, the value of a filtered pixel is influenced not only by
the spatial distances to the pixels in its neighborhood, as is the
case of the Gaussian filter, but also by the range distances (e.g.
intensity) to these pixels. Considering this, the approximate
saliency map computed previously is subject to the Fast Global
Smoother (FGS) [14], which is an edge-preserving smoothing
filter with O(N) complexity.

The FGS operates based on an optimization framework,
which is accelerated by an approximation as a sequence of
1D subsystems that minimizes the following energy function
[14], which is computed for each row/column:

J(u) =
∑
n

(
(un−fn)2+λ

∑
i∈N (n)

wn,i(g)(un−ui)2
)

, (3)

with input image f , guide image g and output image u. These
image rows/columns are defined along n ∈ [0, L], where L is
the width or height of the input image if Eq. 3 is being applied
to a row or a column, respectively. N is the set of the two
neighbors of n (i.e. n− 1 and n+1). The coefficient λ is the
smoothness parameter – the larger its value, the smoother the
output. The function wn,i(g) determines the similarity between
the pixels n and i in the image g and is defined as:

wn,i(g) = exp

(
−||gn − gi||

σc

)
, (4)



where σc denotes the range parameter. The approximate
saliency map was filtered using 3 iterations and σc = 0.03, as
suggested in [14], while λ = 102 was determined empirically.

Although simple edge-preserving smoothing can be use-
ful for denoising, the proposed method leverages a specific
characteristic of the model adopted by FGS – the decoupling
between the sources of domain information and range infor-
mation. By taking domain information (f in Eq. 3) from the
noisy saliency map and range information (g in Eq. 3) from the
full-resolution input image, it is not only possible to denoise
the saliency map but also upsample it. Thus, the runtime of the
method can be improved not only by reducing the size of the
set of random pixels in the computation of the approximate
saliency map but also by doing it in a downsampled version
of the input. The details lost in this process are predominantly
the object contours and texture information. The former is
corrected by joint upsampling with the full-resolution guide
image, while the latter actually improves detection accuracy,
as salient region detection aims at detecting homogeneous
regions, not the details inside of it [24]. Examples of saliency
map approximations in the downsampled image, as well as the
result of their upsampling are presented in Fig. 4.
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Fig. 4. Comparison of saliency maps computed using: large n in full-
resolution, small n in lower resolution and upsampling of the latter. The
ground-truth and input are also presented for comparison. Upsampling results
in more homogeneous regions and can be computed much faster than just
increasing n.

Upsampling a solution computed in a downsampled input by
using information from the full-resolution input was explored
before in the context of the Bilateral Filter [26], under the
name of Joint Bilateral Upsampling [27]. Kopf and colleagues
[27] showed that it can be used in a series of applications,
such as tone mapping, colorization, and depth from stereo.
In fact, the joint upsampling application in the proposed
method can be considered a case of “colorization”, where the
salient regions of the downscaled approximate saliency map
are grayscale scribbles used to fill the regions of the full-
resolution input image. Even though joint upsampling can be
realized by the Bilateral Filter and others [28], the Fast Global
Smoother was adopted due to its fast execution and ease of
parameterization.

C. Summary of the method

The method just presented is summarized in Fig. 5. First
the input image is converted from RGB to the CIELAB
color space. Then the image is downsampled and the color
distances to sparse color samples are computed through the
application of Eq. 2. The output is a downsized noisy saliency
map, that is then filtered by FGS using the original sized
input as guide image, which has the effect of denoising and
upsampling it. This ensures that even though the originally
computed saliency map is noisy and downsampled, the method
still manages to output high resolution homogeneous saliency
maps. The guidance is conducted using a color image because
it can preserve better the edges that are not distinguishable
in grayscale [28]. The upsampled saliency map is subject to
gamma correction with γ = 2 to suppress eventually remaining
noise in the background.

Fast Global
SmootherB

A

Conversion from
RGB to CIELAB

Downsampling
Saliency map
approximation

Guidance Upsampling

Fig. 5. Summary of the proposed method. (A) Conversion from the RGB to
the CIELAB colorspace and saliency map approximation using color distance
with random sparse samples – the sample size is kept small and computation
is done with a downsampled version of the input to reduce runtime. (B) Joint
upsampling of the approximate saliency map using the Fast Global Smoother.
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Fig. 6. Runtime of the most important steps on the proposed method for
input of sizes: 400× 300, 800× 600 and 1200× 900. Computation of color
distances to random sparse samples is very fast and its denoising/upsampling
using FGS can be done in real-time even for large images. The bottleneck,
however, is the colorspace conversion from RGB to CIELAB.

An analysis of the runtime of the proposed method is
given in Fig. 6, which presents the individual runtimes of
its main steps: RGB to CIELAB colorspace conversion, color
distance computation with sparse random samples, FGS, other
operations (i.e. range normalization) and total runtime. As
image dimensions double, the number of pixels increases
exponentially, as does the runtime of each step in the proposed
method, due to their linear complexity. Color distance com-
putation is very fast even for a 1200× 900 image, confirming
the hypothesis that correcting an approximate saliency map is
promising for fast detection. FGS is also fast, suggesting that it
is a reasonable choice for real-time applications even for large
images. Surprisingly, the bottleneck is the colorspace con-
version from RGB to CIELAB, currently implemented using
the MATLAB functions makecform and applycform, and has
longer runtime than the rest of the steps combined. However,
as visual saliency is inherently related to human perception,
a perceptually uniform colorspace is desirable (as shown by
recent work [24]) even though it involves costly nonlinear
operations. Optimization of these operations is possible [29],
but out of the scope of this paper and subject of future work.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental setup

The proposed method was assessed using precision-recall
curves, F-measure and average runtime using the MSRA1K
dataset [15]. The MSRA1K dataset contains 1000 images,
and their respective ground-truths, of many unambiguous (in
terms of what is salient) indoor and outdoor scenarios with
animals, flowers, and other objects. It is currently the most
popular dataset used for saliency detection assessment in the
literature [24]. Our method is compared to other four state-of-
the-art saliency detectors: Frequency-tuned (FT) [15], Spectral

Residual (SR) [30], Random Center Surround (RCS) [22] and
Absorbing Markov Chain (AMC) [31]. The motivation for this
choice of algorithms for comparison were: number of citations
(FT and SR have both more than 1000 citations each), simi-
larity to the proposed approach (RCS is also based on random
color distances) and performance (AMC is the fastest among
the most accurate algorithms in the most extensive benchmark
currently available in the literature [4]). The experiments were
run on an Intel Core i7-860 2.80 Ghz CPU with 4 GB RAM.

B. Metrics

The assessment is based on the precision, recall, F-measure
and runtime metrics. Precision and recall are standard metrics
in saliency detection assessment [24] and are adopted mainly
due to the superior visual distinctiveness of their curves
relative to, for example, ROC curves on highly-skewed data
[32]. They are defined as:

Precision =
TP

TP + FN
, Recall =

TP

TP + FP
, (5)

where TP (true positives) are salient pixels correctly detected
as such, FN (false negatives) are salient pixels detected as
background and FP (false positives) are background pixels
detected as salient. F-measure is a metric used to summarize
precision and recall information in a single value, defined as:

Fβ = (1 + β2)
Precision×Recall

(β2 × Precision) +Recall
, (6)

where, in saliency detection assessment, it is usual to adopt
β2 = 0.3 to give precision more weight than recall, as many
authors consider the former more important [11], [15], [19].

C. Results and discussion

Fig. 7 shows the precision-recall curves for the assessed
methods when applied to the MSRA1K dataset. Each curve
is computed by thresholding the output of a saliency detector
through the entire range of possible thresholds ([0, 255] for
an 8-bit saliency map) and computing precision and recall for
each case. By taking the average curve of all the images in
the dataset for all the compared methods, the curves in Fig. 7
are obtained.

Table I summarizes the average runtimes of the compared
methods on the MSRA1K dataset, as well as their F-measures.
Unlike in the curves presented in Fig 7, instead of averaging
precision and recall for each possible threshold, only one
adaptive threshold was used: twice the average saliency of the
image, as recommended in [15]. This was done in order to
keep the results comparable to the majority of previous work,
which also adopts this approach.

TABLE I
AVERAGE RUNTIME AND F-MEASURE PER IMAGE – MSRA1K DATASET.

Method SR FT RCS AMC Proposed
Runtime (s) 0.0090 0.0582 0.7333 0.1826 0.1117
F-measure 0.4819 0.7070 0.6607 0.9059 0.7363
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Fig. 7. Precision-recall curves for the compared methods on the MSRA1K
dataset. By computing saliency maps with more homogeneous regions, the
recall of the proposed method is superior to most of the compared methods.

The proposed method is capable of accurately detecting
salient regions while being reasonably fast, as can be noticed
in Fig. 7 and Table I. In fact, it has the second highest F-
measure, even though one of its main advantages relative to
the other methods (i.e. higher recall due to more homogeneous
regions) was weighted down by adopting β2 = 0.3. It also
presents one of the best accuracy-runtime trade-offs among
the assessed methods. AMC has the most accurate detection
– however, it is also one of the slowest. AMC is slowed
largely due to its graph-based model using superpixels as
nodes [31]. While oversegmentation into superpixels facilitates
homogeneous regions with well-defined boundaries to emerge,
it results in substantial computational cost. The oversegmenta-
tion algorithm used by AMC is SLIC (Simple Linear Iterative
Clustering) [33], which is is one of the fastest in the literature
– even so, of the 0.1826 s average runtime taken by AMC,
0.1188 s are dedicated to SLIC. That is, its oversegmentation
algorithm alone takes, on average, more time to compute than
the entire proposed method.

FT and RCS have similar detection accuracy – however,
the former is superior to the latter both in accuracy and, more
significantly, runtime. FT is fast mainly because it makes only
one comparison per pixel – it estimates the saliency of a
pixel as its color distance to the average color of the image
– and does not involve any filtering besides slightly blurring
the input image (Gaussian filter using a 5 × 5 window). The
main drawback of this approach is that it emphasizes details
inside the salient region, one of the main reasons for a worse
accuracy when compared to the proposed method, even though
it is computed faster. RCS has the worst runtime among the
compared methods, which can be largely attributed to the
number of sub-windows generated in its computation: n×w×h
for an image with w × h pixels in size. For a medium sized
image with 400 × 300 pixels, it generates 2400 sub-windows,

each with a random size. Even though it is also based on
random sampling, the proposed method outperforms RCS on
both detection accuracy and runtime.

SR is the fastest method among the compared, by far. Its
speed is not only due to its simplicity (i.e. it is computed basi-
cally as a difference in the frequency domain), but also because
the input is downsampled to 64 pixels in width or height before
being processed. These characteristics, apart from making the
algorithm fast, make it very inaccurate for detecting salient
regions, as can be observed by its considerably low accuracy
in Fig. 7 and Table I, the worst among the compared methods.
As such, it is usually considered for fixation prediction, instead
of salient region detection [4].

Fig. 8 shows some saliency maps computed by the com-
pared methods for qualitative assessment. As can be observed,
the proposed method results in homogeneous salient regions
with well-defined edges. It does not emphasize the center of
the image (like AMC and RCS), edges (like SR) or details

In
pu

t
G

ro
un

d-
tr

ut
h

A
M

C
FT

R
C

S
SR

Pr
op

os
ed

Fig. 8. Comparison of saliency maps from the assessed methods on some
images from the MSRA1K dataset. The proposed method has well-defined
edges as well as homogeneous salient regions and, unlike AMC and RCS,
does not emphasize the center of the image.



Input Ground-truth Saliency map

Fig. 9. Cases in which the proposed method fails. Top: the color of the
salient region does not stand out from the background. Bottom: the salient
region is bounded by fuzzy edges.

inside the salient region (like FT, RCS and SR). However, there
are limitations, shown in Fig. 9. When the color of the salient
region does not particularly stand out from the background, the
method fails, which is to be expected as it operates entirely
on that premise. Another situation where the proposed method
fails is when the salient region has fuzzy edges, in which case,
it is simply smoothed.

V. CONCLUSION

A saliency detection method based on color distances using
random samples and joint upsampling was presented. By
computing color distances to small random samples in a
downsampled image, but using the original image in the
CIELAB colorspace as guide image, the method is able to
achieve competitive detection accuracy with state-of-the-art
methods while still maintaining fast computation.

While earlier methods based on random sampling had
disadvantages such as empirical stop conditions and redundant
computations, the method presented here does not present
such limitations. The results presented in this paper show
that the proposed approach is promising, suggesting further
investigation on modeling saliency in a framework of recon-
struction of noisy saliency map approximations, as they can
be computed very fast. Noise estimation algorithms have been
used to make the parameters of the Bilateral Filter adaptive
[34], suggesting possible improvements to the Fast Global
Smoothing filter in the proposed saliency detection method.
In future work we also intend to explore sampling from
a Gaussian distribution instead of an uniform distribution,
in order to approximate the center-surround characteristics
of the human visual system [1]. Future work also includes
investigating the impact of computing the saliency map on
perceptually uniform colorspaces with conversion formulas
simpler than CIELAB, since the conversion from RGB to
CIELAB is the most expensive step in the proposed method.
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