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Abstract—This paper presents a new approach for automatic
oscillography classification in distribution networks, including
the detection of patterns not initially presented to the classifier
during training, which are defined as novelties. We performed
experiments with coupled novelty detection and multi-class classi-
fication, and also in separate stages, using the following classifiers:
Gaussian Mixture Models (GMM), K-means clustering (KM),
K-nearest neighbors (KNN), Parzen Windows (PW), Support
Vector Data Description (SVDD), and multi-class classification
based on Support Vector Machines (SVM). Preliminary results
for simulated data in the Alternative Transient Program (ATP)
demonstrate the ability of the method to identify new classes
of events in a dynamic learning environment. This work was
partially supported by COPEL within the Research and De-
velopment Program of the Brazilian Electrical Energy Agency
(ANEEL).

Index Terms—Multi-class Classification, Support Vector Ma-
chines, Novelty Detection, Automatic Waveform Analysis.

I. INTRODUCTION

Several events are responsible for changes in voltage and
current waveforms in electrical power systems. In the par-
ticular case of voltage waveforms (oscillographic records)
in a power distribution system, there is a range of events
with relevant impact regarding equipment failure or consumer
damage [1]. These events involve changes in the waveforms,
whose correct identification is desirable – in particular, the
following events can be highlighted: short-circuits, lightning,
switching transients, and the start of heavy-duty engines.

For power distribution utilities, voltage waveform variations
cause increasing concern with supply disruption and their
duration, number of outages, voltage levels, frequency devia-
tions, transients, and harmonic contents. In several countries
there are standards that specify the expected quality of service
for distribution networks. The extrapolation of product limits
can incur in fines for power utilities, imposed by regulatory
agencies.

With these restrictions in mind, power utilities have been
taking a series of measures to enable broad monitoring of their
distribution networks, as the identification and classification
of waveform variations may help in mitigation processes,
maintenance, and fault characterization, constituting a support
system for decision making.

A point in common for most classifiers developed for
automatic analysis of oscillographies in electric power systems
is the use of supervised learning for multi-class classification

models [2], [3]. However, in this work we take into account
the possibility of new, previously unseen events happening,
without being considered in the classifier that was initially
defined. This is an important consideration for events that do
not have records stored for modeling, such as data resulting
from transient maneuvers in distributed generation units in a
new smart distribution network.

In this context, it is important that the model is able to
identify events that do not fit the classes known a priori,
i.e. the classes used for training the classifier. There are
some approaches available in the literature that use this idea,
mainly in computer vision applications [4]. To the extent of
our knowledge, none of these approaches has been applied
for automatic analysis of oscillographies, indicating that the
novelty detection stage suggested in this work is an important
contribution to the field.

A first approach for multi-class classification and novelty
detection is based on the use of one-class classifiers, one for
each class known a priori [5]. In this approach, a new pattern
is first checked by each one-class classifier and, if it does
not fit any of the modeled classes, it is considered a novelty.
There are cases in which patterns fit more than one class
model, requiring a similarity measure to define which of them
is more likely to be the class of the pattern being checked.
A second approach available in the literature use a broader
modeling method, performing multi-class classification and
novelty detection altogether, enabling the inclusion of new
classes and, therefore, making continuous learning possible.
For example, in [4], a Gaussian Mixture Model is used to
identify new galaxies from outer space images. A very similar
method was proposed in [6], where a K-means clustering that
allowed on-line addition of new classes to the classifier was
used.

By combining one-class classifiers [7], it is also possible to
construct a multi-class classifier that expands as new classes
are identified, as shown in [8]. In that work, a model for one-
class classifier output normalization was presented, so that
these classifiers can be combined regardless of their output
characteristics (probabilistic or distance-based).

The methods proposed in [4], [6], [8] form the basis for
multi-class and novelty detection for event classification in
the present paper, which we use to promote a more robust
and adaptive classification process to the existing dynamics in



event analysis for distribution networks.

II. THEORETICAL ASPECTS

Since the one-class classifiers used in this paper (GMM,
KM, KNN, PW, and SVDD) are broadly explored in the liter-
ature, we emphasize here the theoretical aspects on our multi-
class classification and novelty detection method, especially
because of its autonomous features during the training stage.
Further details on the use of one-class classification in the
novelty detection context can be found in [7].

A. One-class Classifier

A one-class classifier, also known as novelty detector or
novelty filter, is defined as a classifier based on previously
known patterns, which are arranged as a cluster that allows
the identification of new patterns that are not present in
the originally defined dataset [7] – these previously unseen
patterns are defined as novelties.

There are three different approaches to construct one-class
classifiers [7]. The first group is based on models based that
estimate the probability density function of input patterns.
From this function, it is possible to establish if a new pattern
is an outlier or not, based on its probability value. In this
approach, we highlight parametric estimators based on Gaus-
sian Mixture Models and nonparametric estimators based on
Parzen Windows [7].The second group comprises models with
imposed boundaries upon the data set, assuming an unknown
distribution. Therefore, a boundary optimization problem is
solved in order to represent the data. In this approach, we
highlight the KNN and SVDD methods. And the third group
of models is based on clustering methods. From this kind of
representation, it is possible to define if a given input pattern is
a novelty or not, based on the distance from the input pattern
to previously defined clusters. Within this group, K-means
clustering is one of the the most used methods [6].

It is possible to apply one-class classifiers to a multi-class
problem [9]. There are basically two approaches to accomplish
this task. The first one is to perform multi-class classification
and novelty detection in two different stages [7]. First, during
the training phase, a multi-class classifier is constructed using
the known classes. After that, all known classes are grouped
and defined as a normal class using an one-class classifier.
In the application phase, new input patterns are fed to the
trained one-class classifier – if the pattern belongs to the
normal class (one of the known classes), its corresponding
class is defined via the multi-class classifier; otherwise, the
new pattern is classified as a novelty. In this paper, this
approach will be called Independent Multi-Class Classification
and Novelty Detection (I-MCCND).

The second approach consists in an one-class classifier
applied for each known class of the problem during the
training phase [5]. In this approach, it is possible to obtain
a closed boundary for each class, allowing joint multi-class
classification and novelty detection. In the application phase,
a verification of whether the input pattern fit into one of the
defined one-class models is done. At the end of this process,

some patterns will fit into only one model, while others will fit
into more than one. A third set of patterns will not belong to
any of the adjusted models, being characterized as novelties.

For patterns that fit into more than one model, especially
those located in regions of overlapped classes, it is necessary
some post-processing to confirm to which class these patterns
belong. The post-processing is based on a similarity analysis
between a given pattern and each model involved. For density-
based models (GMM, KNN, and PW), the similarity measure
is based on probabilities – the pattern is assigned to the class
that yields the highest a posteriori probability.

Usual K-means clustering algorithms adopt the Euclidean
distance as the similarity measure between an input pattern
and the center of each cluster, so that the pattern is assigned
to the nearest cluster. Similarly, the SVDD model takes into
account the distance between the pattern and the centers of
hyperspheres in the feature space. In this paper, this approach
will be called Coupled Multi-Class Classification and Novelty
Detection (C-MCCND).

B. Multi-class Classifier
Support Vector Machines were originally developed to solve

classification problems using the concept of an optimum sep-
aration hyperplane, which maximizes the separation margin ρ
between classes. The motivation for maximizing ρ is based on
a complexity measurement known as the Vapnik-Chervonenkis
(VC) dimension [10], whose upper limit is inversely propor-
tional to ρ. Mathematically, the output of an SVM can be
expressed as:

f(x,W , b) = sgn[W TΦ(x) + b], (1)

where Φ(x) : Rn → RN is a nonlinear input mapping
in feature space, W is the parameter set of the model, b
is the bias and sgn(·) is the sign function. Maximization of
the separation margin ρ can be formulated via the following
restrict optimization problem:

min
W ,b,ξ

Es(W ) =
1

2
W TW + C

N∑
i=1

ξi (2)

s.t. {
di[W

TΦ(x) + b] ≥ 1− ξi
ξi ≥ 0

, i = 1, 2, . . . , N

In equation (2), the first term of the objective function is
responsible for complexity control of the model by means of
the maximization of ρ. The second term relates to classification
errors for the dataset, as for correctly classified data ξi is
equal to zero. The hyperparameter C is responsible for the
balance between model complexity and goodness of fit to
the training data, and therefore is denominated regularization
parameter [10].

The quadratic optimization problem in equation (2) can be
solved using the Lagrange multipliers method, whose dual
formulation is given by:

max
α

Ψ(α) =

N∑
i=1

αi −
1

2

N∑
i,j=1

didjK(xi,xj)αiαj (3)



s.t. 
0 ≤ αi ≤ C
N∑
i=1

αidi = 0
, i = 1, 2, . . . , N,

where α represents the set of Lagrange multipliers and
K(xi,xj) the dot product kernel in feature space, as follows:

K(xi,xj) = [Φ(xi)]TΦ(xj). (4)

There are several types of kernel K(xi,xj), which must
abide to the conditions of Mercer’s theorem. In this work, we
use the Gaussian kernel given by:

K(xi,xj) = e

[
−

N∑
l=1

σ2
i (xil−xjl)

2

]
, (5)

where σ2
i are the kernel hyperparameters.

At the optimum of equation (3) not all α∗
i are nonzero. The

vectors for which α∗
i are different than zero are the so called

support vectors, which define the decision surface of the SVM
as follows:

f(x,W , b) = sgn

[
NS∑
i=1

αidiK(xi,x) + b

]
, (6)

where NS is the number of support vectors.
Despite being concerned with the complexity control in their

formulation and yielding the model structure as a subproduct
of the training algorithm through the number of support
vectors, the SVM have some hyperparameters that must be
specified by the user, such as the regularization constant C and
the kernel hyperparameters σ2

i . These values are commonly
selected via cross-validation and in this work we selected
them by means of minimizing the upper limit of the estimated
generalization error in a leave-one-out approach. This resam-
pling method yields an almost non-biased estimate for the
generalization ability of the model [11], but is computationally
intensive. On the other hand, the upper limit used in this work
was analytically developed in [11] and is conceptually founded
on the span of support vectors. To minimize this limit, we use
genetic algorithms, whose optimum reflects an estimate of C
and σi. Therefore, it is not necessary to choose parameters for
training the model in our approach, making it autonomous in
the sense of parameter choice.

III. METHOD

A. Simulated Data

In order to test and validate the segmentation models, we
decided to perform simulations in the Alternative Transient
Program (ATP) environment [12]. In the basic ATP model
used for the generation of simulated events, we have con-
sidered the basic elements of a distribution substation from
COPEL (power distribution company in the state of Paraná,
Brazil), as well as the structures needed for the simulation of
the events [13]. These elements are: substation transformer,
capacitor bank, grounding transformer, four bar feeders, and
the equivalent of the electric circuit up to the substation
transformer. Only one feeder was modeled, being segmented

in several parts, with different cable types. For other feeders,
only the equivalent load was used. All parameters used in the
model were based on real data obtained from COPEL.

We decided to simulate events that can actually occur
in the feeder under analysis, and events that occur in the
electrical system upstream the chosen distribution substation –
29 classes of events were considered, including:

• Single-line-to-ground faults (in each phase)
• two-phase-line-to-ground faults (in each pair of phases)
• three-phase-line-to-ground faults
• two-phase faults (in each pair of phases)
• three-phase faults
• single phase feeder switch-off (in each phase)
• two-phase feeder switch-off (in each pair of phases)
• three-phase feeder switch-off
• single phase feeder reclosing (in each phase)
• two-phase feeder reclosing (in each pair of phases)
• three-phase feeder reclosing
• capacitor bank switching
• start of heavy-duty engines
• single-line-to-ground faults and two-phase-line-to-ground

faults in the electrical system before the chosen distribu-
tion substation

For each isolated event, which was logged by an oscil-
lographer, we varied the instant and location of occurrence,
the fault resistance, and the measurement site. Varying these
parameters, we obtained 18 events per class for short-circuits
and ten events per class for switching events. From a total
of 621 events, 414 were used for training and 207 for testing
the classifiers. In addition, we also included simultaneous and
subsequent events, with an occurrence interval of 1/4 of a cycle
between each event – the following sequences were adopted:

• Feeder switch-off (single or two phase) followed by
feeder reclosing (two or three phase)

• Short-circuit (single, two, or three phase) followed by
feeder reclosing (single, two, or three phase)

• Feeder switch-off (single or two phase) followed by
feeder switch-off (two or three phase)

• Short-circuit (single or two phase) followed by short-
circuit (two or three phase)

• Capacitor bank switching followed by short-circuit (sin-
gle, two, or three phase)

• Capacitor bank switching simultaneously to a short-
circuit (single, two, or three phase)

• Feeder reclosing simultaneously to a short-circuit (single,
two, or three phase)

In this way, we obtained 128 subsequent and 60 simulta-
neous events. It is worth mentioning that the subsequent and
simultaneous events will be considered here as part of the class
defined as novelty.

B. Multi-Class Classification and Novelty Detection

The method applied for model training is summarized in
figure 1. Initially, samples from all 29 classes were randomly
combined to define the classes known a priori and the classes



Fig. 1. Training method.

that are to be identified as novelties. In this process, the
number of classes that form the basis of supervised learning
were also chosen randomly – the minimum number of known
classes used in this work was defined as three. The process
shown in figure 1 was repeated 100 times, making it possible
to obtain an average classification performance for different
numbers of classes known a priori.

Three sets are extracted from the group of known classes.
The first is the training set, which is used for model estimation
with 414 events generated for this purpose. The second is
the test set, which is used in the test stage, both for novelty
detection and multi-class classification, with the 207 remaining
events. The third group of classes is related to expected nov-
elties – this set is based on the classes that were not selected
for supervised learning, along with the set of simultaneous and
subsequent events.

After defining the training and testing sets, we applied a
pre-processing stage to the data – each waveform of each
phase of the signal was decomposed using a Discrete Wavelet
Packet Transform (DWPT) in four levels (16 sub-bands at
a sampling frequency of 15360Hz) using the Daubechies-8
mother wavelet [14]. After decomposing the input signals, we
computed the energy contents of each DWPT level. The energy
contents was computed before and during the event, i.e. for
each DWPT level we obtained the energy ratio between the
cycle where the event occurred and the cycle immediately
before the occurrence, extracting signal features as shown
in [13].

Once the pre-processing was performed, the matrices cor-
responding to the test and novelty sets were stored for the
test stage. The training set was used to estimate all models in
the I-MCCND and C-MCCND approaches, such as: one-class
classifier for all classes, one-class classifier for each class, and
the multi-class classifier using SVM.

After model estimation, we assessed the performance of

Fig. 2. Test method.

each proposed method, comprising the two different ap-
proaches – I-MCCND and C-MCCND. For each experiment
run, the test matrix (multi-class) and the novelty matrix were
merged in order to be used for performance assessment. The
resulting matrix is called global matrix and is composed by all
extracted features during the pre-processing stage and the class
label index K of each pattern, while patterns in the novelty
class are labeled with the index K + 1.

In the I-MCCND approach, novelty detection and multi-
class classification are performed independently. Initially, it is
verified if a given pattern belongs to the set of known classes,
via an one-class classifier that groups all known classes. Then,
if the pattern is considered as known beforehand, a multi-
class classifier is used to define to which class the pattern
belongs. This approach is summarized in figure 2, where the
classification block is segmented in two stages. In the C-
MCCND approach, one-class classifiers are used for each of
the known classes and, therefore, it is possible to implement
the classification block in figure 2 in a single stage.

For overall performance analysis in both I-MCCND and C-
MCCND approaches, one can construct a confusion matrix
with K classes known a priori and the novelty class K + 1.
Using this matrix, one can compute the average performance
for all classes, including the novelty class. The performance
reflects the ability of the method to identify novelties and
perform the multi-class classification.

IV. RESULTS

A. I-MCCND Approach

Table I presents the results obtained for the I-MCCND
approach, using the PW, GMM, KM, KNN, and one-class
SVDD classifiers for novelty detection, followed by a multi-
class SVM classifier. The results shown refer to 100 different
arrangements of known classes selected as described previ-
ously.

TABLE I
GLOBAL AVERAGE PERFORMANCE FOR THE I-MCCND APPROACH.

Method Average Performance(%) ± Std. Dev.
PW 20.69 ± 7.70

GMM 57.50 ± 15.70
KM 59.09 ± 12.17

KNN 60.27 ± 13.53
SVDD 36.72 ± 17.82



In table I, one can observe that the average performance for
all methods is below 61% of accuracy. The best performances
were obtained for GMM, KM, and KNN methods. However,
some arrangements of known classes presented a far superior
overall performance when compared to the average perfor-
mance. We observed that performance was maximized when
the group of known classes was formed by classes of the same
nature, i.e. short-circuits – there was an overall performance of
82.52%, 91.37%, and 80.15% for the GMM, KM, and KNN
methods, respectively, in the particular case of the group of
known classes formed by single-line-to-ground faults, two-
phase-line-to-ground faults, three-phase-line-to-ground faults,
two-phase faults, three-phase faults; and the novelty class
formed by all remaining classes, along with subsequent and
simultaneous events.

B. C-MCCND Approach

For the C-MCCND approach, we have used the same 100
different arrangements of known classes used previously for
the I-MCCND approach. Thus, it is possible to perform a
fair comparison between these two approaches. The overall
performance of the C-MCCND method is shown in table II,
where one can notice a significant improvement for KM,
KNN, and SVDD methods. For the GMM method, the overall
performance was worse than the performance shown in table I.

TABLE II
GLOBAL AVERAGE PERFORMANCE FOR THE C-MCCND APPROACH.

Method Average Performance(%) ± Std. Dev.
PW 21.12 ± 3.78

GMM 36.30 ± 5.86
KM 71.09 ± 7.71

KNN 68.64 ± 7.99
SVDD 51.12 ± 12.28

The same observation drawn for the I-MCCND approach,
regarding grouping of known classes, also applies to the C-
MCCND. In the latter case, a global result of 86.69% was
obtained for the GMM classifier, considering the same class
arrangement previously discussed for the former case.

When comparing the results in table II with those in
table I, it is observed that the C-MCCND approach yielded
performances that are superior to the I-MCCND approach in
most cases. KM and KNN methods presented better overall
results in both proposed approaches – the overall accuracy
of 71.09% yielded by the KM method in the C-MCCND
approach can be highlighted as the best.

V. CONCLUSIONS

In this paper we proposed a novelty detection stage oper-
ating with a multi-class classifier for event classification in
power distribution networks using voltage oscillographies as
input data. To the extent of our knowledge, this approach
is original – especially when classification of oscillographic
records in power networks is considered. Experiments were
performed using the novelty detection and multi-class classifi-
cation engaged in independent stages, using GMM, PW, KM,

KNN, and SVDD one-class classifiers, followed by an SVM
multi-class classifier. The whole process was assessed using
simulated data in the Alternative Transient Program.

When we consider the overall performance of the novelty
detector and multi-class classifier, it is possible to obtain an
average performance of 71.09% for different classes known
beforehand. For a specific group of classes regarding events
of the same nature (short-circuits), we observed 91.37% of
accuracy. The number of classes and arrangements used in
this work result in large confusion matrices that could not be
presented due to space restrictions, but we summarize them
stating that the classification performances for short-circuits
was always superior to the ones for other classes.

Once novelty detection is considered original in oscillo-
graphic record classification, we were not able to establish a
comparison to current methods. However, we conclude that the
preliminary performances obtained indicate a real possibility
of including aspects related to dynamic learning, i.e. new class
identification, in oscillographic record classification.
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