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Abstract A new method for biometric identification of hu-
man irises is proposed in this paper. The method is based
on morphological image processing for the identification of
unique skeletons of iris structures, which are then used for
feature extraction. In this approach, local iris features are
represented by the most stable nodes, branches and end-
points extracted from the identified skeletons. Assessment of
the proposed method was done using subsets of images from
the University of Bath Iris Image Database (1000 images)
and the CASIA Iris Image Database (500 images). Compel-
ling experimental results demonstrate the viability of using
the proposed morphological approach for iris recognition
when compared to a state-of-the-art algorithm that uses a
global feature extraction approach.
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Setembro 3165, Curitiba-PR, CEP 80230-901, Brazil
E-mail: mira@utfpr.edu.br

Hugo Vieira Neto
Graduate School of Electrical Engineering and Applied Computer Sci-
ence, Federal University of Technology – Paraná, Avenida Sete de
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1 Introduction

Biometric identification is currently being used in several
security applications due to increasing concerns on access
control, authentication and fraud prevention. Research ef-
forts are constantly made in order to obtain biometric recog-
nition systems that are more efficient, secure and reliable.
Besides hand geometry, fingerprint and face recognition, iris
recognition in particular has been largely considered as an
important field of research in biometrics.

The human iris consists of a pigmented fibrovascular tis-
sue, formed by many minute local features – crypts, freck-
les, furrows and corona – which yield an arrangement rich
in details. These features are unique for each individual and
result from a random process in the development of anatom-
ical structures during the embryonic stage. The iris is an ex-
ternally visible organ that is stable to ageing and can be used
for non-invasive biometric authentication [17,20,28].

Due to the great amount of local information at different
scales, the use of mathematical morphology operators is a
potential solution for the extraction of human iris features.
Mathematical morphology is a branch of non-linear image
processing that aims at extracting image information by de-
scribing its geometrical structures in a formal way. One of its
main advantages is the ability to selectively preserve struc-
tural information when carrying out tasks of interest on the
image.

In mathematical morphology, the information relative to
the topology and geometry of an unknown set – for instance,
an image – is extracted using another completely defined set
called structuring element (SE) [21], which has a particular
geometrical shape. The basic idea behind morphological op-
erators is to probe the image locally in order to extract shape
and size information from the way the SE geometrically fits.
More complex operators (lattice operators) can be obtained
from basic operators and used to accomplish more specific
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tasks, such as detection of protrusions and gaps, extraction
of valleys and crest-lines, feature extraction based on shape
and size, among others.

This paper presents an approach based on morphological
operators that is able to identify relevant local patterns in the
iris for feature extraction and later classification. After fea-
ture extraction, the most stable local iris features among sev-
eral image samples are selected for representation, and intra
and interclass similarity distributions are established. Clas-
sification is then carried out based on these similarity distri-
butions, aiming at obtaining an optimal decision threshold
that minimises classification error rates.

Figure 1 shows the stages involved in a typical iris recog-
nition system.
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Fig. 1 Typical iris recognition system. The process begins with the im-
age acquisition of the eye, followed by an optional pre-processing stage
to improve the quality of the acquired image. Next, the segmentation
stage localises the inner and outer iris borders, which is followed by an
optional normalisation process to compensate variations in capture dis-
tance, rotation and pupil size. The set of features known as biometric
signature (iris representation) is then obtained by the feature extrac-
tion stage. In the final matching stage, iris signatures are compared and
submitted to a similarity threshold in order to generate a decision.

In the image acquisition stage, one of the main chal-
lenges is to set up an image acquisition hardware that is able
to capture good quality images without causing discomfort
to the subject under analysis. Depending on parameters such
as the distance to the subject, illumination conditions and
framing, a pre-processing stage may be necessary in order
to improve overall image quality, highlighting iris structures
and reducing reflection artifacts, for example.

In order to minimise the image area to be processed, it
is necessary to determine the region of interest (ROI) be-
tween the sclera and the pupil, which comprises the iris un-
der analysis. Automatic and robust ROI identification is not
a trivial task due to factors such as low contrast between eye
regions, eyelid skin pigmentation, partial eyelid occlusion
and the presence of eyelashes.

After establishing the ROI, the next step concerns fea-
ture extraction. The iris is composed of many different lo-
cal features, which are unique to each individual. These pat-
terns might be represented using different methods, which
are usually based on global information obtained from the
Laplacian pyramid [28], multi-scale quadrature wavelets [5,
13] or zero-crossing of some wavelet transform [1,15]. The
feature representation of the iris under analysis is then fi-

nally compared to patterns stored in a database via suitable
classification algorithms.

Related research explores a variety of ways to extract
global iris features, taking into account the discriminative
power that can be obtained, as well as the different stages
that may be used in the process [1,4,5,11,12,17,19]. The
novel approach presented here takes advantage of the abil-
ity of morphological operators to extract local information,
from which the most stable features can be selected in order
to represent the iris.

2 Morphology-based iris recognition

The human iris is composed by a variety of features that
produce a structure rich in details. The basic idea of the pro-
posed method is to apply morphological operators [21] in
order to identify and highlight existing patterns in the iris,
obtaining structures from which local features will be ex-
tracted and selected to build a representation. Due to diver-
sity and quantity of spatial features of the iris, the choice of
representation directly affects the amount of information to
be stored.

Figure 2 presents a block diagram of the iris recogni-
tion system used in this work, which is an enhanced version
of the one initially proposed in [16]. Morphological opera-
tors are used in the segmentation, morphological processing,
removal of redundant pixels and feature extraction stages.
Enhanced feature extraction, representation and matching
stages use a new concept of stable local iris features within
different image samples from the same subjects for the con-
struction of corresponding reference feature vectors. The fol-
lowing subsections describe each stage of the system in de-
tail.
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Fig. 2 Enhanced morphology-based iris recognition system from pre-
vious work [16]. After image acquisition and pre-processing, a mor-
phological iris segmentation is performed. Morphological image pro-
cessing is then used in order to obtain a representation of the iris that
will finally be matched to other iris representations stored in a database.
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2.1 Segmentation

After the eye image is acquired in gray-scale (8-bit resolu-
tion) and submitted to a pre-processing stage for contrast
enhancement using histogram equalisation [8], it is neces-
sary to segment the ROI containing the iris to be analysed.
In order to extract the ROI – i.e. to identify the inner and
outer borders of the iris – a sequence of operators is applied
as follows.

To obtain the pupil region, which corresponds to the in-
ner border of the iris, we first take the complement of the
equalised input image. The resulting complemented image
is then thresholded using a threshold value t1 close to white
(255), because after being complemented the pupil region
tends to white. Some small structures and holes (noise) re-
maining in the resulting binary image (IBi1) are eliminated
by applying an area opening operator [26] followed by a
closing operator.

The area opening operator γa
λ

removes any connected
components with less area than λ in a binary image F [22,
25,27]:

γ
a
λ
(F) =

⋃
B∈Aλ

γB(F), (1)

where γB denotes opening by structuring element B and Aλ

denotes the class of subsets of a connected compact set,
whose areas are greater than or equal to λ .

With the purpose to remove small structures still in the
pupil region, the area opening operator defined in Equation
(1) is applied to image IBi1 using a cross SE (BC):

I1
Bi1 = γ

a
λ1
(IBi1) =

⋃
BC∈Aλ1

γBC(IBi1). (2)

In order to close holes in the pupil region, the resulting
binary image I1

Bi1 is submitted to the closing operator φBB

[21,22] using a box SE (BB):

I2
Bi1 = φBB(I

1
Bi1) = εBB [δBB(I

1
Bi1)], (3)

where εBB and δBB denote erosion and dilatation by structur-
ing element BB, respectively.

To detect the outer border, the previously complemented
input image is thresholded considering a lower threshold
value t2 that segments the region corresponding to the iris
and pupil, considering the fact that pixels of the iris region
tend to appear in the middle of the gray scale. The gaps and
undesired structures present in the resulting binary image
(IBi2) are discarded by applying a closing operation with a
box SE, followed by an area opening with a cross SE, re-
spectively.

Figure 3 shows the result of the segmentation process
just described. With information of the inner and outer iris
borders, the image pixels out of the ROI can be discarded,
resulting in the segmented iris image I (Figure 4a).

Fig. 3 Iris segmentation [16]. The inner border (pupil) is identified by
a dotted white ellipsis, while the outer border (sclera) is identified by a
solid white circle.

2.2 Feature extraction

After pre-processing and segmentation, a sequence of mor-
phological operators is applied to the ROI in order to iden-
tify and enhance meaningful iris patterns to be used in fur-
ther recognition or classification tasks. We conducted an in-
vestigation of the behaviour of several morphological oper-
ators when applied to existing iris patterns and their struc-
tures, in such a way to determine which operators to use and
their sequence of application. Figure 4 summarises the mor-
phological processing of the segmented ROI.

First, the segmented iris image I (Figure 4a) is submit-
ted to a close-by-reconstruction top-hat operator φ rec th [22,
26] in order to highlight every existing structure. This op-
erator creates an output image by subtracting the image I
from its closing by reconstruction φ rec

Bdil ,Bcon
, defined by two

structuring elements – one for dilation (Bdil) and other for
connectivity (Bcon). In this case a box SE was used for Bdil
and a cross SE was used for Bcon:

I1 = φ
rec th(I) = φ

rec
BB,BC

(I)− I. (4)

Figure 4b shows the resulting image I1 from applying
Equation (4), where one can see that all existing iris struc-
tures are highlighted.

Next, in order to emphasise the most salient patterns in
the iris, image I1 is submitted to an opening operator γB us-
ing a cross SE:

I2 = γBC(I1) = δBC [εBC(I1)]. (5)
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(a) (b) (c)

(d) (e) (f)

Fig. 4 Morphological processing of the segmented ROI [16]. (a) seg-
mented iris image I; (b) image I1 with iris structures highlighted; (c)
image I2 with the most salient patterns emphasised; (d) image I3 with
small structures removed; (e) thresholded image I4 with the most rele-
vant structures; (f) final image I5 with skeletonised iris structures.

The result from applying Equation (5) is image I2 (Fig-
ure 4c), where the most salient patterns (pixel arrangements
of larger size) become even more evident.

In order to remove the remaining small structures of the
iris, an area opening operator is then applied to image I2. As
the input image is in gray-scale, the binary version of the
area opening operator is applied successively to the image
layers [22,25,27]:

I3 = γ
a
λ2
(I2) =

⋃
BC∈Aλ2

γBC(I2), (6)

using a cross SE to remove the small structures of the iris.
Figure 4d shows the resulting image I3 from applying

Equation (6), where one can notice that small iris structures
were removed.

The gray-scale image I3 is then thresholded to segment
relevant structures, yielding image I4 (Figure 4e). Since rel-
evant structures appear in the dark side of the gray scale, a
threshold t3 close to black (0) is used to keep them. How-
ever, the remaining structures after thresholding still must
go through a thinning process [21,22] in order to obtain
an appropriate iris representation, as these structures present
themselves as agglomerates of pixels. Thinning is related to
the hit-or-miss transform (HMT), which is expressed by:

HMTB(F) = εB1(F)∩ εB2(F
C), (7)

where B1 is the subset of B associated to the foreground, B2
is the subset of B associated to the background and FC is the
complement of F .

In the thinning operation (THIN), each iteration is per-
formed by subtracting points that are detected by eight hit-
or-miss operators rotated by 45 degrees from each other [8]
in image I4, as expressed by:

I5 = THINB(I4) = I4−HMTB(I4). (8)

The final result of the thinning operation can be seen in
Figure 4f, which contains the skeleton of each relevant iris
structure. However, some redundant pixels still remain in the
skeletonised structures after thinning, hindering the identifi-
cation of end-points and nodes, which are essential for the
iris representation adopted in this work. Figure 5 shows a de-
tail from the skeleton of an iris structure, where redundant
pixels, end-points and nodes can be observed.

Fig. 5 Detail from the skeleton of an iris structure [16]. Redundant
pixels are indicated by solid black squares, end-points are indicated by
dark gray squares with a central white dot, and nodes are indicated by
white squares with a surrounding black line and a central black dot.

As can be seen in Figure 5, there are many small details
embedded in the skeleton of an iris structure that may not
be significant for efficient classification. Therefore, in the
method proposed here, a selection of the most stable local
iris features among different image samples of the same iris
is conducted in order to build a definitive reference feature
vector, as detailed in subsection 2.5.

2.3 Redundant pixel removal

An algorithm based on the single path concept was designed
to eliminate redundant pixels from the skeleton that is ob-
tained, resulting in a single path connecting adjacent pixels
[16]. Elimination of redundant pixels must not cause any gap
in the structure pattern so that local features (end-points and
nodes) are preserved. Since conventional skeletonisation al-
gorithms often result in undesired gaps in the structure, as
shown in Figure 6, a method that verifies the neighbourhood
of the pixel under analysis was designed to ensure that ex-
isting connections are preserved.
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(a) (b)

Fig. 6 Results of conventional skeletonisation algorithms. (a) input im-
age containing redundant pixels in the structure; (b) output image with
undesired gaps (highlighted with circles) after skeletonisation.

To eliminate redundant pixels, two types of 5×5 struc-
turing elements are used: SE-1 and SE-2, shown in Fig-
ures 7a and 7c, and their 90 degree clockwise rotated ver-
sions SE-1r and SE-2r, shown in Figures 7b and 7d, respec-
tively.
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Fig. 7 Structuring elements used for redundant pixel removal. (a) SE-
1; (b) SE-1r; (c) SE-2; (d) SE-2r.

The redundant pixel removal algorithm that was devel-
oped is based on the hit-or-miss transformation, which is
computed by translating the origin of the SE to each pos-
sible pixel position in the image, and comparing it to the
underlying image pixels at each position. If there is a match
between the SE and the underlying image pixels, the im-
age pixel corresponding to centre of the SE is modified (in
Figure 7 these pixels are emphasised). The SE shapes were
designed to verify pixels in specific neighbourhoods.

The procedure begins with a search for pixels that are set
to 1 in the image. When a pixel (p) is found in this condi-
tion, the verification of its neighbourhood begins (the neigh-
bourhood notation that was used is shown in Figure 8). The
neighbourhood verification sequence, which is related to the

structuring elements used (red mask in Figures 9 and 10), is
the following:

Step 1 The centre of SE-1 (blue) is positioned over pixel
N4 in the image (Figure 9a). If the pixels of SE-1 match
the underlying pixels of the image, then pixel N4 is set to 0
(Figure 9b).

Step 2 The same procedure described in Step 1 is performed
substituting SE-1 for SE-2.

Step 3 The centre of SE-1r (blue) is positioned over pixel
N2 in the image (Figure 10a). If the pixels of SE-1r match
the underlying pixels of the image, then pixel N2 is set to 0
(Figure 10b).

Step 4 The same procedure described in Step 3 is performed
substituting SE-1r for SE-2r.

Steps 5 to 8 The same neighbourhood verification sequence
described in Steps 1 to 4 is repeated, but now positioning the
centre of the structuring elements over pixel N3. In all cases
(Steps 5 to 8), pixel N3 will be modified if there is a match.

p

D2

D4D3

D1

(a)

p

N1

N4

N3

N2

(b)

p

D2 N1

N4

D4N3D3

D1

N2

(c)

Fig. 8 Neighbourhood notation that was used. (a) diagonal neighbour-
hood; (b) 4-neighbourhood; (c) 8-neighbourhood.

When the neighbourhood verification sequence (Steps 1
to 8) is finished, pixels that had their value set to 0 during the
processing steps are finally modified in the output image and
the image scan continues. In Figures 9 and 10, positioning of
the SE appears highlighted in red; pixels in bold correspond
to positions where the SE pixels must match the underlying
image pixels.

After the redundant pixel removal process, an image that
is suitable for feature extraction is obtained. The result of the
algorithm can be seen in the Figure 11, where it can be no-
ticed that redundant pixels were eliminated without causing
any breaks in connection (gaps) in the structure, unlike what
is observed in Figure 6b.

2.4 Geometric normalisation

To compensate misalignments caused by translation, rota-
tion and scaling of the iris under analysis when compared
to the images stored in the database, the binary image I4
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Fig. 9 Step 1 of the neighbourhood verification sequence. (a) The cen-
tre of SE-1 is positioned over pixel N4; (b) pixel N4 is set to 0 if the
pixels of SE-1 match the underlying pixels of the image.
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Fig. 10 Step 3 of the neighbourhood verification sequence. (a) The
centre of SE-1r is positioned over pixel N2; (b) pixel N2 is set to 0 if
the pixels of SE-1r match the underlying pixels of the image.

Fig. 11 Result of the redundant pixel removal algorithm [16]. No gaps
are present in the resulting structure skeleton (compare to Figure 6b).

containing the relevant structures (Figure 4e) is submitted
to a normalisation procedure that adjusts it for the match-
ing stage. The compensation of geometric transformation
effects is done by an algorithm based on the affine motion
transform [2,23].

This procedure takes an image containing pseudo-struc-
tures as reference. Pseudo-structures are generated from the
iris representation from the database, which contains the lo-
cation of end-points and nodes, as shown in Figure 12a. The
binary image created from the information stored in the da-
tabase is dilated twice using a box SE, in order to ensure
the connectivity of each pseudo-structure, as shown in Fig-
ure 12b, which will be used for the alignment of image I4
(Figure 4e) of the iris under analysis by the recognition sys-
tem.

(a) (b)

Fig. 12 Reconstructed feature image [16]. (a) end-points and nodes;
(b) resulting pseudo-structures.

The comparison between image I4 and the image con-
taining pseudo-structures generated from the iris represen-
tation stored in the database allows the estimation of the er-
ror between original and actual position of features, based
on the minimum absolute difference [2]. Therefore, the bi-
nary feature images can have their structures aligned for the
matching procedure.

2.5 Feature representation

The iris representation approach used in this paper is based
on information about nodes (points where ramifications of
the structure start), end-points (structure terminations) and
branches of the structure, which can be seen in Figure 5.
After removing redundant pixels from the skeletons of the
structures, the next stage consists in identifying end-points
and nodes.

The identification process begins with by verifying the
8-neighbourhood of every pixel p. Since an end-point is a
pixel located at the extremity of a branch, if only one neigh-
bour of p is set to 1, then p is an end-point. Figure 13a shows
examples of end-points identified in a structure. However, if
three or more pixels in the 8-neighbourhood of p are set to
1, then p is considered a node. Figure 13b shows examples
of nodes found in a structure. In some cases, it is necessary
to eliminate redundant nodes that may appear close to each
other. This redundant node removal can be performed using
the following criterion: if there is more than one node within
a distance of three pixels, then their average coordinates are
taken as the location of the definitive node. Figure 13c ex-
emplifies the result of this redundant node removal criterion.

The coordinates of end-points and nodes, as well as their
respective number of branches, are used to build the feature
vector for iris representation. In order to obtain the number
of branches for some specific node, its ramifications must
be evaluated based on corresponding end-points. For each
node, coordinates and number of branches are concatenated
to form the corresponding feature vector.

The definitive reference feature vectors for matching are
generated from the most stable local iris features present in
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(a)

(b)

(c)

Fig. 13 Feature identification example [16]. (a) identification of end-
points (dark gray); (b) identification of nodes (black); (c) removal of
redundant nodes.

different iris image samples per subject, in order to increase
the robustness of the representation. Experiments with in-
creasing numbers of different image samples from the same
subject have shown that five feature vectors corresponding
to each image sample are enough to select the most stable
features in order to generate definitive reference feature vec-
tors for each individual iris (more details are given in sub-
section 4.2).

For the selection of the most stable local features, each
of the five base feature vectors containing the coordinates
of nodes is matched against all the other base feature vec-
tors and only the nodes that are present in at least four of
the five base feature vectors – the most stable ones – are se-
lected to be included in the definitive reference feature vec-
tor. The same three pixel tolerance criterion used before for
redundant node removal is used to compute average coordi-
nates for matching stable nodes. The selection of the most
stable local features for representation results in great im-
provement in the overall iris classification performance, as
shown later in section 4.

2.6 Matching and classification

After mapping the coordinates of end-points and nodes, the
feature comparison procedure is based on a one to one cor-
respondence. Initially, in order to identify matching nodes,
coordinates in the iris feature vector under analysis are com-
pared to those in the reference feature vector obtained from
five image samples, as described before. Then, in order to
obtain the corresponding number of branches for matching
nodes, the ramifications of each node are verified.

A score S is used as base parameter for the classification
process and assumes normalised values in the interval [0,1],
which is computed as follows:

S =
M
N
, (9)

where M denotes the number of matching nodes and N de-
notes the number of stable nodes in the reference feature
vector.

The classification strategy adopted is based on similar-
ity measures between classes (intra and interclass). This ap-
proach yields an optimal decision threshold T that tends to
minimise the equal error rate (EER). A binary classifier for
authentic and impostor identities can be established based
on this optimal decision threshold. The decision (D) reached
by the classifier is defined as follows:

D =

{
authentic, if S≥ T
impostor, if S < T

. (10)

3 Experimental setup

A subset of 1000 images from the University of Bath Iris Im-
age Database [24], comprising 20 images of each eye from
25 subjects, was used in order to assess the proposed iris
classification method. The University of Bath Iris Image Da-
tabase is composed of images of 1280× 960 pixels in size,
which were acquired in gray-scale using infra-red illumina-
tion, and was used in a number of previous studies available
in the literature [9,10,18,29–31].

Additionally, a subset of 500 images from the CASIA
Iris Image Database V3-Interval [3], containing 10 images
of each eye from 25 subjects, was also used for further as-
sessment of the proposed method. The CASIA Iris Image
Database is composed of images of 320×280 pixels in size,
acquired in gray-scale under near infrared illumination.

In this work, five images from each subject were used to
build reference feature vectors for each class, as described
in subsection 2.5. The remaining images from each sub-
ject were then used to test the proposed iris classification
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scheme. Matching between reference and test feature vec-
tors from the databases allowed the computation of intra-
class and interclass score distribution curves, which in turn
were used to compute the false acceptance rate (FAR) and
the false rejection rate (FRR) of the classifier and to deter-
mine an optimal decision threshold for class separation. Re-
ceiver operating characteristics (ROC) curves [14] and their
respective AUC (area under the curve) and EER (equal error
rate) statistics were also used for performance assessment.

The feature vectors obtained from the images for each
class in the databases were submitted to a matching pro-
cess so that intraclass and interclass score distribution curves
and figures of merit could be computed. This procedure was
used in order to perform statistical assessments of the pro-
posed method and to allow comparisons with other methods.
Therefore, all experiments were conducted in two stages, as
shown in Figure 14.

Iris 1,1
(reference)

Iris 1,2

Iris 1,N

Iris 2,1
(reference)

Iris 2,2

Iris 2,N

Iris M,1
(reference)

Iris M,N

Iris M,2

Iris 2,1

Iris 3,1

Iris M,1

Iris 1,1
(reference)

Iris 1,1

Iris 2,1

Iris M−1,1

Iris M,1
(reference)

Iris 1,1

Iris 3,1

Iris M,1

Iris 2,1
(reference)

Class 1

Class 1 Class 2

Class 2 Class 3

Class 3

Intraclass Matching

Interclass Matching

Fig. 14 Intraclass and interclass statistical assessment scheme. Intra-
class matching was conducted among iris samples of the same subject,
while interclass matching was conducted among iris samples of differ-
ent subjects.

In the intraclass matching stage, for each subject in the
database, the reference feature vector of each subject was
matched against the test feature vectors of the same subject.
In the interclass matching stage, the reference feature vector
of each subject was matched against the reference feature
vectors of the remaining subjects.

In order to have a baseline for comparison of the results
obtained for the proposed method, the state-of-the-art iris
recognition method proposed by Daugman [5–7] was also
implemented and used following the experimental proce-
dure shown in Figure 14.

4 Results

Intraclass and interclass score distribution curves and the
ROC curve for matching nodes were computed in order to
assess the performance of the proposed approach for iris
classification. Results obtained for Daugman’s method were
used to compute intraclass and interclass Hamming distance
distribution curves and the corresponding ROC curve.

Figure 15 shows the intraclass and interclass matching
distribution curves obtained for the method proposed in this
work and Daugman’s method using the subset of images
from the University of Bath Iris Image Database.
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Fig. 15 Intraclass and interclass matching distribution curves for the
subset of images from the University of Bath Iris Image Database.
(a) matching scores (proposed method); (b) matching distance (Daug-
man’s method). Higher matching scores in the proposed method rep-
resent higher similarity between irises. Daugman’s method uses the
Hamming distance and therefore higher values represent higher dis-
similarity between irises.

It can be noticed from the curves in Figure 15 that there
is a clear separation between intra and interclass distribu-
tions for both methods. The distribution curves appear more
widely spread throughout the similarity axis in Figure 15a,
a characteristic that seems to favour class separation and to
contribute for the achievement of low error rates. In Fig-
ure 15b the distributions curves for the Hamming distance
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used in Daugman’s method are more concentrated in a re-
duced range of the dissimilarity axis.

ROC curve analysis was also used in order to compare
performances. The ROC curve plots the false rejection rate
(FRR) as a function of the false acceptance rate (FAR) for
varying threshold values – the FAR indicates the probability
of accepting an impostor and the FRR indicates the proba-
bility of rejecting an authentic subject – obtained from in-
traclass and interclass comparisons for each sample in the
database.

4.1 Classification using all detected iris features

A first experiment to assess classification performance us-
ing all detected iris features to compose reference feature
vectors (V1) was conducted with the subset of images from
the University of Bath Iris Image Database. Figure 16 shows
the resulting ROC curves for both proposed and Daugman’s
methods.
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Fig. 16 ROC curves obtained for both proposed method - V1 (red line)
and Daugman’s method (blue line) using a subset of image samples
from the CASIA Iris Image Database. Composing reference feature
vectors with all detected iris features results in worse overall perfor-
mance of the proposed method.

As can be seen in Figure 16, using all local iris features
to compose reference feature vectors results in worse clas-
sification performance than the one obtained using Daug-
man’s method.

4.2 Selection of the most stable iris features

Given the first results obtained, an extra experiment was
conducted in order to determine whether the selection of sta-
ble local iris features would have any positive impact in the
overall classification performance of the proposed method.
For that purpose, only five subjects were randomly chosen
from the subset of images from the University of Bath Iris
Image Database, and an increasing number of image sam-
ples – ranging from two to seven – was used to select stable

features and to assess the corresponding classification per-
formances. Figure 17 shows the ROC curves obtained for
classification using an increasing number of image samples
for feature vector composition using the most stable features
for the same subjects.
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Fig. 17 ROC curves obtained for an increasing number of image sam-
ples for feature vector composition using the most stable features
among the samples. Selecting stable features from five or more im-
age samples results in significant improvement in classification perfor-
mance.

It can be noticed in Figure 17 that significant improve-
ment in classification performance is obtained by using five
or more image samples to select stable features. As the im-
provement in performance is not expressive for more than
five image samples, the number of image samples for the
selection of the most stable iris features was set to five.

4.3 Classification using the most stable iris features

Following the encouraging results obtained in the experi-
ment using the selection of stable local iris features, a second
experiment to assess classification performance using the
entire subset of images from the University of Bath Iris Im-
age Database was conducted using this approach (V2). Fig-
ure 18 shows the results obtained, in which one can notice
that the proposed method shows equivalent overall perfor-
mance to the one obtained using Daugman’s method when
using the most stable iris features from five image samples.

Table 1 summarises typical biometric recognition sys-
tem FAR configurations and their corresponding FRR taken
from the ROC curves in Figure 18. The area under the ROC
curve (AUC), equal error rate (EER) and accuracy of the
classifier were also used to assess the overall performance
of both methods – results of these assessments are shown in
Table 2 and confirm the equivalent performance yielded by
both methods, indicating the feasibility of iris recognition
using a local feature extraction approach based on mathe-
matical morphology.

Additional experiments using the V2 approach were also
conducted with a subset of image samples from the CASIA
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Fig. 18 ROC curves obtained for both proposed method - V2 (red line)
and Daugman’s method (blue line), using a subset of image samples
from the University of Bath Iris Image Database. When only the most
stable iris features are used to compose reference feature vectors, both
methods yield equivalent performances.

Table 1 Typical FAR configurations and corresponding FRR obtained
for both methods – subset of image samples from the University of
Bath Iris Image Database.

FAR FRR (Daugman) FRR (Proposed)
0.1% 0.23% 0.11%
0.01% 0.71% 0.52%
0.001% 1.36% 1.16%
0.0001% 2.02% 1.97%

Table 2 Area under the ROC curve (AUC), equal error rate (ERR) and
accuracy obtained for both methods – subset of image samples from
the University of Bath Iris Image Database.

Daugman Proposed
AUC 0.99921 0.99941
EER 0.78% 0.65%

Accuracy 99.22% 99.35%

Iris Image Database. The results shown in Figure 19 confirm
that the proposed method yields equivalent performance to
the one obtained using Daugman’s method.

Tables 3 and 4 summarise the information from the ROC
curves shown in Figure 19 in terms of FAR and FRR, and
also AUC, EER and classifier accuracy statistics. Slightly
worse overall performances were obtained with the CASIA
Iris Image Database and this fact is attributed to the much
lower image resolution available in this database in compar-
ison to the image resolution available in the University of
Bath Iris Image Database.

5 Discussion

Daugman’s method was implemented according to informa-
tion available in the literature [5–7]. The mean value of 0.46
obtained for the interclass Hamming distance distribution
(see Figure 15b) is practically the same reported in the liter-
ature, in spite of the fact that a different iris image database
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Fig. 19 ROC curves obtained for both proposed method - V2 (red line)
and Daugman’s method (blue line), now using a subset of image sam-
ples from the CASIA Iris Image Database. Again, both methods yield
equivalent performances when only the most stable iris features are
used to compose reference feature vectors.

Table 3 Typical FAR configurations and corresponding FRR obtained
for both methods – subset of image samples from the CASIA Iris Image
Database.

FAR FRR (Daugman) FRR (Proposed)
0.1% 0.44% 0.44%
0.01% 1.06% 1.15%
0.001% 1.66% 1.59%
0.0001% 2.25% 2.25%

Table 4 Area under the ROC curve (AUC), equal error rate (EER) and
accuracy obtained for both methods – subset of image samples from
the CASIA Iris Image Database.

Daugman Proposed
AUC 0.99766 0.99757
EER 1.05% 1.12%

Accuracy 98.95% 98.88%

was used, indicating that the implementation of Daugman’s
method used in this work presents coherent results.

Several iris recognition methods available in the litera-
ture use Daugman’s rubber-sheet homogeneous model [5] to
map the iris to a dimensionless coordinate system in order to
compensate changes in size and pupil dilation. That model
is critically dependent on the accuracy in finding the inner
and outer iris boundaries in the segmentation stage, and is
also affected by non-concentricity and non-circularity of iris
boundaries, which commonly happen in practice but never-
theless are disregarded by many methods. Occlusion is an-
other important factor that affects iris boundaries – the inner
boundary can be often occluded by reflections of the illu-
mination device and the outer boundary by upper or lower
eyelids. In the proposed method these problems are avoided
because no constraint is imposed to boundary shapes by the
morphological operators used in the segmentation process,
which proved their efficacy to obtain the ROI.

Besides reflection and eyelid occlusion, the iris image
information can also be degraded by eyelash occlusion. Eye-
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lashes present intricate random shapes that are difficult to
be detected by simple shape models and, in terms of con-
trast energy, can appear as the dominant signal in the iris
image. If the eyelash signal is not detected and minimised,
it can possibly degenerate the iris feature vector with spuri-
ous information (noise). As the proposed approach to con-
struct iris feature vectors is based on information obtained
from local iris structures and not the entire segmented iris
region, eyelash occlusions tend to affect less the feature ex-
traction process. Generally, the loss of information produced
by typical occlusion caused by eyelids and eyelashes is not
enough to degenerate the performance of the proposed algo-
rithms. Due to the disposition of the structures in the iris and
how the proposed algorithms process this information, the
remaining areas of the iris which are free from occlusions
contain enough information (stable structures) to allow com-
parisons still with excellent efficacy. Further studies are cur-
rently being conducted to establish the minimum percentage
of occlusion-free area that is necessary to perform compar-
isons without compromising classification performance.

In order to compensate translation, rotation and scaling
effects during image acquisition, as well as variations in
pupil size, the segmented iris region is submitted to a nor-
malisation procedure. Several approaches use the normali-
sation method proposed by Daugman [5], but the method
proposed in this paper uses information directly from exist-
ing structures in the iris image to compensate for variations
and misalignments. The normalisation procedure based on
mathematical morphology that is responsible for alignment
of iris structures spends about 80% of the total processing
time of the proposed iris identification algorithm. Alterna-
tives to reduce the computational cost of this important pro-
cessing stage are being currently studied and so far it was
possible to establish that the images in which more time was
spent for alignment also resulted in higher FRR values. Fur-
ther analysis of these special cases indicates that large varia-
tions in pupil diameter between reference and candidate iris
images is the most critical aspect to be looked into.

The proposed representation of iris structures based on
stable nodes showed to be adequate to characterise the exist-
ing patterns in human irises, achieving excellent identifica-
tion performance. The resulting representation is also com-
pact – feature vectors obtained using the proposed method
require in average 750 bytes of storage size. Even though
only matching nodes and number of branches per matching
node were used in the experiments reported here, additional
information about end-points can be used, possibly increas-
ing the reliability and robustness of the representation.

6 Conclusion

This work presented a biometric iris identification method
in which morphological operators were used to extract sta-

ble local patterns to represent and characterise human irises.
The morphological approach was used successfully in sev-
eral processing stages, such as iris localisation, segmenta-
tion and local feature extraction.

The fact of using local information to represent irises
makes the proposed method very flexible, in such a way that
different types of features (nodes, branches and end-points)
can be specifically chosen to be used or not. Also, the use
of local information allows the selection of stable features
among a number of different image samples from the same
subject, according to the degree of accuracy desired for clas-
sification.

Results of experiments using subsets of images from two
widely used iris databases – the University of Bath Iris Im-
age Database and CASIA Iris Image Database – show that
the proposed approach is suitable to be used in iris recogni-
tion systems and is suitable to be used in images acquired in
differing resolutions and under differing illumination condi-
tions.

Statistical analysis of the experiments was based on a
method that allows determination of the optimal decision
threshold from intraclass and interclass matching distribu-
tion curves. ROC curve analysis and the AUC were used
in order to compare the proposed method and Daugman’s
state-of-the-art method, showing that they achieve equiva-
lent performances despite their rather different processing
approaches.
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