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A New Approach for Event Detection in
Smart Distribution Oscillograph Recorders

André E. Lazzaretti, Vitor H. Ferreira, Hugo Vieira Neto, Luiz F. R. B. Toledo and Cleverson L. S. Pinto

Abstract—This paper presents some new results for a funda-
mental step in automatic oscillography analysis: transient detec-
tion. We performed experiments with usual detection methods,
such as the Kalman filter (KF) and autoregressive (AR) models,
and we are proposing a new method based on the Discrete
Wavelet Transform (DWT) and Support Vector Data Description
(SVDD). Data simulated in the Alternative Transient Program
(ATP) was generated for comparison and validation of detection
performance. The results presented here demonstrate that the
proposed detection method based on DWT and SVDD yields
better overall performance for the transient detection process
when compared to currently used methods such as KF and AR
models. These results show the potential for possible embed-
ded applications in automatic oscillographic recorders in smart
distribution networks, in which identification, characterization,
and mitigation of events is critical for network operation and
maintenance.

Index Terms—Oscillography Segmentation, Transient Detec-
tion, Wavelet Transform, Support Vector Data Description, Au-
tomatic Waveform Analysis.

I. INTRODUCTION

THE analysis of voltage and current oscillographies is one
of the most important tools for event discrimination in

electrical power system networks. This analysis provides a
basis for mitigation processes, maintenance, and fault charac-
terization, resulting in a support system for decision making
by power utilities [1].

The voltage and current variations that occur due to the
transition between two events are critical for event segmenta-
tion and characterization in a recorded waveform. Basically,
the detection process involves two distinct stages: the iden-
tification of instants at which transitions occur (triggering),
and segmentation of the waveform in disjoint time blocks.
The segmentation stage splits the signal in quasi-stationary
states, allowing independent waveform analysis in each one
of them [2].

In figure 1 there are examples of transients in an oscil-
lography, which are marked by rectangles that characterize
the triggering process. Between transients are the segments of
an oscillographic record, or quasi-stationary states. The joint
analysis of triggering and segmentation provides a complete
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Fig. 1. Triggering and segmentation of an oscillographic record.

interpretation of each event, although it is noticeable in figure 1
that most of the events have their main characteristics in quasi-
stationary states, once they are related to short-circuits or
switching events.

There are several methods for triggering and segmentation
in oscillographies, which are usually dealt with simultane-
ously. Generally, these methods are grouped according to the
nature of preprocessing applied to the signals under analysis.
The main groups are [2]:
• Time domain analysis of variations;
• Frequency domain filtering;
• Time-frequency domain analysis;
• Spectral estimation analysis of most prominent residuals;
• Machine learning methods.
In all methods, the simplest and most commonly used

involve time domain signal analysis. These methods determine
the beginning and the end of an event through the extraction
of features such as the RMS value of the signal. In [3], it is
shown that the performance of these methods is suitable only
for events with large variations in the RMS value in quasi-
stationary states. However, for small variations in the RMS
value, the performance of time domain methods can affect the
temporal localization accuracy of events, especially for short
duration transients.

A first alternative to overcome the difficulties that appear in
time domain methods is the use of filters for better character-
ization of transitions between segments of a waveform [4]. In
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[5], a procedure for filtering the signal in the frequency domain
was proposed, whose main feature is to make the transitions
between states more prominent, even in noisy conditions.
Moreover, the proposed filter has a low computational cost,
which makes it more attractive than conventional time domain
methods.

Still in this context, one of the major innovations in
event detection was the use of time-frequency transforms,
in particular the Discrete Wavelet Transform [2]. In this
type of transform, the temporal information available in the
signals is preserved in different frequency bands. This is an
important feature, once the observed transients in electrical
power systems events have a fairly wide range of frequency
content.

For wavelet-based detection methods, the approaches pro-
posed by Ukil and colleagues [4], [6]–[9] are noteworthy.
They consist of computing a wavelet decomposition of the
signals being analyzed and then automatically segmentating
disturbances. For this, the universal threshold presented in [10]
is computed and followed by a smoothing filter. This procedure
guarantees that the whole detection process is done without the
need of empirical thresholds, avoiding a supervised processing
stage normally present in waveform analysis [11].

Regarding spectral estimation methods, we highlight the use
of the Kalman filter [12]–[14] and autoregressive models [3],
whose performance is comparable to the performance of time-
frequency methods. Accordingly, spectral estimation and time-
frequency methods can be considered the most frequently used
methods in recent studies involving event detection [2].

Another group of techniques used for event detection, not
yet completely explored in electrical power systems, is based
on machine learning [15]. However, for signals from other
domains, these methods are well exploited, mainly by novelty
detection methods. In [16]–[18], one-class Support Vector Ma-
chines (SVM) were applied for signals in different applications
and the results are comparable to spectral estimation methods,
both in terms of performance and computational complexity.
An interesting advantage of this approach, although, is the
possibility of a combined representation, by using a DWT
as preprocessing stage and an SVM-based novelty filter as
processing stage, exploiting all the benefits provided by time-
frequency and novelty detection representations.

Therefore, this paper compares currently used spectral es-
timation methods – Kalman filter and autoregressive models
– and a machine learning technique based on Support Vector
Data Description and a Discrete Wavelet Transform, following
the idea of the one-class SVM proposed in [18] and the
segmentation methods proposed in [14]. This new approach for
event detection in electrical power systems using a combined
DWT and SVDD representation yields great performance for
automatic segmentation when compared to currently employed
techniques.

It is also important to note that the oscillograph event detec-
tion may be of fundamental importance in a smart distribution
network – an automatic process of detection may allow faster
identification and analysis of faults in the network, supporting
the process of decision making by operation engineers.

II. THEORETICAL ASPECTS

A. Discrete Wavelet Transform

The main motivation for DWT is the time-scale signal de-
composition in frequency sub-bands, using orthonormal bases
obtained from digital filter banks [19]. The signal is processed
by a series of low- and high-pass filters that separate low- and
high-frequency components in different subspaces. The filters
construction is based on the wavelet function properties, as
defined in [20] and [19]. Thus, orthonormal bases of discrete
wavelet functions are not only associated with the mother
wavelet function, but also with the scale function. The mother
wavelet function is associated with details or high-pass filters,
whereas the scale function is related to approximations or low-
pass filters, forming an orthonormal basis.

Decomposition of the input signal into approximation and
detail coefficients is the foundation of multi-resolution analysis
[19], and can be done using a pair of finite impulse response
filters – a high- and a low-pass filter for the decomposition
process, as well as their conjugates for the reconstruction pro-
cess. In this way, the resolution analysis can be associated with
filtering operations, and the scale analysis can be associated
with downsampling and upsampling operations during decom-
position and reconstruction, respectively. Once the signal is
decomposed, the most prominent frequency components result
in high amplitudes in the DWT sub-bands that include these
particular frequencies, retaining the temporal localization of
the frequency components, different from that which occurs
in the Fourier Transform.

The wavelet decomposition procedure presents good time-
domain resolution for high-frequency components and good
frequency-domain resolution for low-frequency components.
These properties make an alternative spectral representation
to the one given by the Fourier Transform possible, using
nonlinearly spaced frequency sub-bands, allowing specific
components localization of the signal under analysis, which
consists of a very important characteristic for power distri-
bution waveform analysis. More details of the procedure of
DWT can be found in [20] and [19].

B. Support Vector Data Description

The main feature of the SVDD model is a representation of
the input data in a high dimensional space without the need of
large additional computational effort [21]. This representation
allows more flexible descriptors of the input data, following
the same idea of Support Vector Machines [22].

It is assumed that for a given input pattern x, there is a
closed surface – more precisely, a hypersphere – that surrounds
it and is characterized by its center a and radius R. For the
particular case where all the input patterns (training set) are
located within a single hypersphere, the empirical risk is null.
Thus, one can define the structural risk as:

ε(R, a) = R2, (1)

which must be minimized with the following restrictions:

‖xi − a‖2 ≤ R2, ∀i. (2)
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When one takes into account the possibility that there
are outliers in the training set, it is necessary to include an
additional term in the initial formulation. This additional term
penalizes patterns farther from the edge of the hypersphere
(outliers or novelties), keeping the trade-off between empirical
and structural risks, since it results in a training error that is
different than zero. With the new formulation, the minimiza-
tion problem becomes:

ε(R, a, ξ) = R2 + C
∑
i

ξi, (3)

grouping most patterns within the hypersphere:

‖xi − a‖2 ≤ R2 + ξi, ξi ≥ 0, ∀i. (4)

where C is the model structural control, which keeps the trade-
off between the volume of the hypersphere and the empirical
risk.

The parameters R, a and ξ can be obtained by optimizing
the functional (5), whose restrictions were included using
Lagrange multipliers (αi and γi).

L(R, a, ξ, α, γ) = R2 + C
∑
i

ξi− (5)∑
i

αi[R
2 + ξi − (xi.xi − 2a.xi + a.a)]−

∑
i

γiξi.

In order to adapt the problem to quadratic programming
[23], partial derivatives are calculated from functional (5) with
respect to R, a, ξ and equated to zero, which results in the
following formulation:

L =
∑
i

αi(xi.xi)−
∑
i,j

αiαj(xi.xj), (6)

subject to the following restrictions:

0 ≤ αi ≤ C, ∀i. (7)

Through Lagrange multiplier constraint analysis, it is pos-
sible to establish the location of a given pattern with respect
to the edges of the hypersphere. That is, a pattern may be
located within, on the edge, or outside the edge (outlier)
of the hypersphere. The patterns located on the edge of
the hypersphere with nonzero αi are called support vectors,
since they are responsible for edge characterization of the
hypersphere. Other patterns can be discarded, as their αi are
equal to zero.

In order to develop the hypersphere in feature space, it is
necessary to perform a mapping Φ of x to the new space,
resulting in mapped patterns x∗. Therefore, the equation can
be rewritten:

L =
∑
i

αiΦ(xi).Φ(xi)−
∑
i,j

αiαjΦ(xi).Φ(xj). (8)

Because the mapping is applied only for the vectors on
which the inner product is evaluated, it is possible to use
the Mercer kernel representation [22] without the need of
explicitly mapping calculations, as K(xi, xj) = Φ(xi).Φ(xj).
This results in the following modification:

L =
∑
i

αiK(xi, xi)−
∑
i,j

αiαjK(xi, xj). (9)

Fig. 2. Distance computation using SVDD hyperspheres.

By using the Gaussian kernel, the Lagrangian is given by:

L = −
∑
i,j

αiαjK(xi, xj). (10)

In this representation, a pattern z is considered a novelty, if∑
i

αi exp
(
−‖z−a‖2

σ

)
> (11)

1
2

[∑
i,j

αiαj exp
(
−‖xi−xj‖2

σ

)
−R2

]
,

otherwise the pattern is within the hypersphere in feature
space.

Finally, the center of the hypersphere may be computed
using the expression:

a =
∑
i

αixi, (12)

and its radius given by the distance between a and one of the
support vectors.

C. SVDD for Event Detection

Assuming a pattern recognition problem in which input
data is composed by two attributes, for a given time instant
t, two windows are extracted for posterior analysis, gen-
erating the sequences X1 = (xt−m1

, . . . , xt−1) and X2 =
(xt, . . . , xt+m1−1), whose dimensions are (2,m1) and (2,m2),
respectively [18]. Assuming also that on each of these se-
quences an SVDD model is applied, the input data for each
sequence (X1 and X2) is represented by the hyperspheres with
radius R1 and R2, and centers c1, c2, as shown in figure 2.

Figure 2 shows two different instants, in which the proposed
analysis is applied. The first instant is calculated for windows
m1 and m2 – the SVDD model is applied for each window
and the result is schematically presented in the figure. The
result reflects the behavior of input patterns into a new domain,
whose representation is associated to a hypersphere of center
and radius determined by the SVDD algorithm.
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The same procedure can be adopted to a later instant in
time, as shown by windows m∗1 and m∗2 in figure 2. In this
case, it is noted that the mapping generates very similar repre-
sentations for both windows, since the resulting hyperspheres
are virtually superimposed. Observing the features, it is clear
that there is a very similar behavior between windows m∗1 and
m∗2, which is automatically reflected in the high dimensional
space in which the hyperspheres are constructed. This scenario
is quite different for windows m1 and m2, since features of
the input data are significantly different and result in distant
hyperspheres in feature space.

Whereas the attributes of features 1 and 2 are a result of
preprocessing (e.g, using a DWT), one can use the method
described to determine abrupt changes in a given signal. This
process was initially applied to musical signals using one-class
Support Vector Machines in [24] and its main foundation lies
on the distance between the hyperspheres, calculated as:

D(t) =

∑
features

‖c1 − c2‖2

R1 +R2
. (13)

The hyperspheres are updated for each time step t, taking
into account the analysis for each window and resulting in a
value for D(t) that is similar to the Euclidean distance between
the centers of the hyperspheres in the high-dimensional feature
space (c1, c2). The greater the difference between subsequent
windows, the greater the distance in feature space between
the hyperspheres and, consequently, the greater the probability
of existing an abrupt variation on the signal within the two
windows considered in the analysis.

After computing the distance, a threshold is applied in order
to separate transition and quasi-stationary states of the signal.
That is, instants whose distance value exceeds the threshold
value are considered as transitions between states. The instants
of time whose distance value is below the threshold are
characterized as quasi-stationary states, or even the steady-
state signal. In this work we have used different thresholds
for model comparison.

Once the threshold calculation is done, it is possible to per-
form the waveform segmentation. Spectral estimation methods
require an additional stage before the complete segmentation,
as shown in [7]. In these methods, a previous smoothing of
the signal is necessary for a complete segmentation, as there
are cases in which residual values are below the calculated
threshold even when they reflect transitional state changes. For
the model proposed here, the smoothing stage is unnecessary,
since the obtained mapping is itself smoothed.

In this type of representation, it is possible to exploit
the advantages that other transformations provide for event
detection. By preprocessing the signal with a DWT, a more
robust event detection can be performed because the distances
between hyperspheres are dependent on the DWT at different
levels (input features).

III. EXPERIMENTAL SETUP

In order to describe the experimental setup used in this
work, we chose to present the characteristics of the simulated
database used in the comparison of detection methods. Then,

we also present details of the DWT and SVDD detection
method that was used, so that comparisons to spectral methods
presented in [4], [6]–[9] can be made.

A. Simulated Events

In order to test and validate the segmentation models, we
decided to perform simulations on the Alternative Transient
Program (ATP) environment [25]. In the basic ATP model
used for the generation of simulated events, we have con-
sidered the basic elements of a distribution substation from
COPEL, as well as the structures needed for the simulation
of the events [26]. These elements are: substation transformer,
capacitor bank, grounding transformer, four bar feeders, and
the equivalent of the electric circuit up to the substation
transformer. Only one feeder was modeled, being segmented
in several parts, as shown in figure 3, with different cable types
(CA336, Cu 35mm2, and Cu 120mm2). For other feeders, only
the equivalent load was used. All parameters used in the model
were based on real data obtained from COPEL.

The following events were considered: single-line-to-ground
faults, two-phase-line-to-ground faults, three-phase-line-to-
ground faults, two-phase faults, three-phase faults, feeder cir-
cuit breaker switch-off, automatic feeder reclosing, capacitor
bank switching, and start of heavy-duty engines. The instant
and the measurement location of the events generated were
varied, and when concerning short-circuits, the fault resistance
was also varied. Moreover, we considered the number of events
per oscillography and the interval between occurrences when
consecutive events were considered [2].

We selected two instants of occurrence for each event. The
first being at the zero crossing of the voltage signal and the
second at the maximum positive signal. For fault resistance, we
also selected two values: 5Ω and 300Ω. For the measurement
location, we chose to record the signals at the substation bar
and at the middle of the feeder. For the number of events per
oscillography, the following sequences were used:
• Single-line-to-ground faults can be: isolated, followed

by feeder circuit breaker switch-off, followed by feeder
circuit breaker switch-off and automatic feeder reclosing,
followed by two-phase-line-to-ground fault, or followed
by three-phase-line-to-ground fault;

• Two-phase-line-to-ground faults can be: isolated, fol-
lowed by feeder circuit breaker switch-off, followed by
feeder circuit breaker switch-off and automatic feeder re-
closing, or followed by three-phase-line-to-ground fault;

• Two-phase faults can be: isolated, or followed by feeder
circuit breaker switch-off;

• Capacitor bank switching can be: isolated, followed
by single-line-to-ground fault, followed by two-phase-
line-to-ground fault, or followed by three-phase-line-to-
ground fault.

The intervals between events were selected as 1/4 of a cycle
and 1.5 cycle, in order to assess the segmentation for very
close consecutive events or even widely separated ones. Using
these features, we generated 170 waveforms for analysis. For
the ground-truth, we chose to segment transients and quasi-
stationary states of each disturbance visually.
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Fig. 3. Schematic Diagram of the Simulation Model.

B. Waveform Segmentation

Before we present the method applied for waveform seg-
mentation (or event detection) using DWT and SVDD, we will
present all modeling parameters. These parameters include the
sampling frequecy, the analysis window widths (e.g. m1 and
m2 in figure 2), the shift between the windows, the SVDD
parameters (σ and C), and the number of decomposition levels
and wavelet function used for the DWT.

The wavelet function used was the Daubechies-20. As
shown in [7], this wavelet family presents the best results for
detection problems. The order of the wavelet function was
selected to be 20 because it allows a better localization of
transients on different sub-bands, given the high Q factor of
the corresponding filter. The number of levels was chosen to
be four, with signals sampled at 7,680 Hz. These levels have
shown to contain the most prominent frequency component
variations at the instants of transients observed in simulated
data.

Regarding the analysis windows, we used 1/8 of a cycle
as width for each observation window. Thus, we obtained
a resolution of 1/4 of a cycle. For parameters σ and C,
we chose the values 20 and 0.2, respectively. This choice
was based on the method for automatic selection of these
parameters presented in [27]. Since the computational cost for
this automatic selection method is too high for our application,
it was used only to define parameters – the parameters selected
during an optimization for a reduced set of oscillographic
records containing one disturbance for each class were later
used for the segmentation of other records.

After defining the parameters, distances were computed and
thresholded to perform the segmentation. The entire process
is shown in figure 4.

Initially, the wavelet decomposition was performed for the
entire waveform. Then, the SVDD model was estimated for
each window, determining the center and radius of hyper-
spheres in the wavelet domain. After that, distance calculation

Fig. 4. Segmentation method using DWT and SVDD.

between the hyperspheres corresponding to each window was
performed. Upon reaching the end of the waveform, threshold
comparison and signal segmentation was performed, highlit-
ing the samples that corresponded to transitions and quasi-
stationary states.

The performance assesment was made using ROC (Receiver
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Fig. 5. Threshold variation and ROC analysis.

Operating Characteristic) analysis [28], based on the ground-
truth established for each event. To this end, the residuals
or distances (resulting from the mapping model) were ana-
lyzed and it was possible to establish the estimation behavior
according to the selected threshold value. We observed the
residual or distance behaviors for different threshold values,
measuring the quality of the model output – different threshold
values generated different points in the ROC curve, as shown
in figure 5. We chose 50 different thresholds linearly sepa-
rated in the range [0, 1], considering normalized residuals and
distances.

We have used the area under the ROC curve (AUC) [28] as
the performance measurement for each method. As a single
value, the use of the AUC statistic simplifies performance
comparisons.

IV. RESULTS

Table I summarizes the performance for the three detection
models evaluated, where the superior performance of the DWT
and SVDD method for different thresholds can be noticed. In
some cases, the detection performance was considerably lower
than the average performance for the 170 waveforms. These
cases correspond to events with more than one transient state
in the waveform, since residues or calculated distances – and
hence the threshold – may be significantly influenced by the
first large transient in the signal, hindering the characterization
of other (less impacting) transients.

TABLE I
PERFORMANCE SEGMENTATION FOR SIMULATED DATA.

Model AUC for Different
Thresholds (Mean ± Std. Dev.)

KF 0.92 ± 0.14
AR 0.93 ± 0.11

DWT and SVDD 0.97 ± 0.07

Moreover, in cases related to the start of a heavy-duty
engine, it is usual to characterize the transient period as
the complete duration of the voltage sag. Nevertheless, the
methods evaluated here aim to detect only the higher frequency

transients observed between different quasi-stationary states –
this compromises the detection of any slow changes in the
waveform.

From the viewpoint of a subsequent classification, only the
initial instant is necessary to implement classification algo-
rithms [26]. However, what is proposed here is the extraction
of the whole transient between quasi-stationary states. This
extraction maximizes the probability of event start detection.

From a global perspective, the method based on DWT
and SVDD yielded better results for different thresholds.
Analyzing only the efficiency of the mapping generated by
residuals or distances, we observe a far superior performance
for this method, with AUC over 0.95. This demonstrates that
the generated mapping is quite efficient, even for different
events in the same waveform.

V. CONCLUSIONS

This paper presented the results of a new approach for a
fundamental step in automatic waveform analysis in distri-
bution networks: detection of transient and quasi-stationary
states. The proposed approach was compared with commonly
used detection methods for simulated data in ATP.

Regarding event segmentation, performances were verified
for different thresholds, in order to verify the response of the
mapping performed by detection methods and the performance
of a fully automatic segmentation method. It was observed that
the proposed method, based on DWT and SVDD, yields better
overall performance for simulated data, considering different
threshold levels. This indicates that the proposed method can
be a very efficient way to extract transitions between quasi-
stationary states.

Further work includes the investigation of automatic thresh-
old calculation, in which referral to a specialist for choosing
the threshold for segmentation will be unnecessary – some-
times in the literature this process is called “fully automatic”.
We also intend to extend this analysis to real data.

VI. ACKNOWLEDGMENT

This work was partially supported by Companhia
Paranaense de Energia (Copel), within the Research and
Development Program of the Agência Nacional de Energia
Elétrica (Brazilian Electrical Energy Agency).

REFERENCES

[1] R. C. Dugan, M. F. McGranaghan, S. Santoso, and H. W. Beaty,
Electrical Power System Quality, 2nd ed. New York: McGraw-Hill,
2002.

[2] M. Bollen and I. Gu, Signal Processing of Power Quality Disturbances:.
John Wiley & Sons Inc., 2006.

[3] M. H. J. Bollen, I. Y. H. Gu, P. G. V. Axelberg, and E. Styvaktakis,
“Classification of Underlying Causes of Power Quality Disturbances:
Deterministic versus Statistical Methods,” EURASIP Journal on Ad-
vances in Signal Processing, vol. 2007, pp. 1–18, 2007.

[4] A. Ukil and R. Zivanovic, “Abrupt Change Detection in Power System
Fault Analysis using Wavelet Transform,” in International Conference
on Power Systems Transients, 2005.

[5] D. Wiot, “A New Adaptive Transient Monitoring Scheme for Detection
of Power System Events,” IEEE Transactions on Power Delivery,
vol. 19, pp. 42–48, 2004.



7

[6] A. Ukil and R. Zivanovic, “Detection of abrupt changes in power system
fault analysis: A comparative study,” in Southern African Universities
Power Engineering Conference, 2005.

[7] ——, “Abrupt change detection in power system fault analysis using
adaptive whitening filter and wavelet transform,” Electric Power Systems
Research, vol. 76, pp. 815–823, 2006.

[8] A. Ukil and R. Ivanovi, “Application of Abrupt Change Detection in
Power Systems Disturbance Analysis and Relay Performance Monitor-
ing,” IEEE Transactions on Power Delivery, vol. 22, pp. 59–66, 2007.

[9] A. Ukil and R. Zivanovic, “Adjusted Haar wavelet for application in the
power systems disturbance analysis,” Digital Signal Processing, vol. 18,
pp. 103–115, 2008.

[10] D. L. Donoho and I. M. Johnstone, “Ideal Spatial Adaptation by Wavelet
Shrinkage,” Biometrika, vol. 81, p. 425, 1994.

[11] F. B. Costa, B. A. Souza, and N. S. D. Brito, “Detecção de faltas
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