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Abstract

This paper presents results of experiments in subsymbolic processing of visual data, to achieve identification
and tracking ofarbitrary objects, which are intended to be used in autonomous robots for novelty detection
and navigation purposes.
Artificial neural networks with unsupervised training are used as the classification stage for the vision system,
in order to provide the robot the ability to develop its own representations from perceptual data without the
need of any external human-provided information. We present an evaluation of the behaviour of the system
when using very simple feature extraction techniques, such as horizontal and vertical average histograms, as
well as average coarse coding.

1 Introduction

Animals can rapidly detect novelties in their normal en-
vironment using different sources of perceptual informa-
tion. As it is relevant for survival, this particular ability to
be aware of environmental changes is very important, for
example, to find food or avoid predators.

The sense of vision plays an essential role in animal
behaviour either for tracking movements or identifying
objects of interest. It follows that novelty detection using
artificial vision can be of equal importance to autonomous
mobile robots. If such an ability is feasible to be imple-
mented artificially, possible applications are in automated
inspection and surveillance tasks.

Previous work done by Marsland et al. (Marsland et al.,
2000, 2002) has given successful results in novelty de-
tection, using habituation and sonar data in real robots.
Habituation is a reduction in responses to stimuli that are
repeatedly presented to the system and therefore can be
used to highlight new perceptions.

The ultimate aim of the present research is to achieve
a novelty detection system to be used in autonomous mo-
bile robots using the known model of habituation and ar-
tificial vision as the main perceptual input.

Dealing with visual information is often a difficult task,
because of the large amounts of data involved and the
processing power required. As a consequence, it is nec-
essary to arrange some sort of internal representation
through models of the aspects of interest in the environ-
ment. These models, which are simplified abstractions
of the original aspects, are expected to describe relevant
features and eliminate unnecessary details.

However, “relevant features” are not always clear to the
designer of such a system, nor what constitutes “unnec-

essary details”. Nehmzow (Nehmzow, 1999) argues that
in this case a method of model acquisition through robot
learning is a more feasible solution, rather than explicitly
supplyinga priori models.

In this first stage of our research we are looking for
suitable ways to extract relevant features from raw im-
age data in order to manage processing in reasonable time
and storage size, which are especially important for au-
tonomously operating robots that have to respond to stim-
uli in real-time.

We are particularly interested in implementing an at-
tention mechanism to be used in an active vision approach
to localise and physically track objects of interest, as part
of the whole novelty detection system to be developed.

2 Experiments

2.1 Objective

Our system was designed to determine where an arbitrary
target object was located within an image frame. The tar-
get was provided by the user and its location was deter-
mined by the system as one of 25 non-overlapped sub-
images of the frame (see Figure 3).

2.2 Experimental Setup

Our experiments were conducted using a Magellan Pro
mobile robot, which is shown in Figure 1. The robot
is equiped with a colour CCD camera, pan-tilt unit and
framegrabber board, which are able to acquire RGB im-
ages with160× 120 pixels in size. Images were acquired
while the robot was not in motion.



Figure 1: The Magellan Pro mobile robot

2.2.1 System Architecture

The functional blocks of our approach towards a system
that can be trained to localise and track a small set of ob-
jects is given in Figure 2. Two very simple and compu-
tationally inexpensive image coding techniques were se-
lected to be evaluated as the pre-processing stage.

As the classification stage, two different connectionist
approaches with unsupervised training were chosen to be
compared.
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Figure 2: Functional blocks of the vision system

The pre-processing scheme consisted of partitioning
the original image into 25 sub-images with32 × 24 pix-
els in size, as shown in Figure 3. After partitioning, pre-
processing continues with each raw sub-image serving as
input for a feature extraction stage, in order to generate
more compact input vectors to the classification stage.
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Figure 3: The 25 sub-images that result from parti-
tioning the original image

2.2.2 Image Pre-processing

Two image coding techniques were used in different sets
of experiments. The first consisted of computing the hor-
izontal and vertical average histograms of the three RGB
colour channels and stacking them into single feature vec-
tors with3× (32 + 24) = 168 elements (Figure 4).
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Figure 4: Image pre-processing using histograms

The second image pre-processing mechanism tested
consisted of computing the average coarse coding of the
three RGB colour channels within an8 × 8 neighbour-
hood, resulting in feature vectors with3×( 32

8 ×
24
8 ) = 36

elements (Figure 5).

R G B

C
C
C
CW ?

�
�
�
��

8x8 8x8 8x8
Avg Avg Avg

Input Vector (3 x (3 x 4) = 36 elements in total)

Figure 5: Image pre-processing using coarse coding

2.2.3 Image Classification

Two different neural network approaches were also tested
in different sets of experiments. The first was a torus-
shaped self-organising feature map (SOFM) (Kohonen,
1984) with10 × 10 units, the second was a single-layer
feedforward neural network that performs principal com-
ponent analysis (PCA) (Sanger, 1989; Ballard, 1997) with
16 units.

The SOFM network was trained according to the usual
winner-takes-all approach (Kohonen, 1984), using the
similarity matching given in Equation 1, where~wc is the
winner among all~wi units for a given input~x.

‖ ~x(t)− ~wc(t) ‖= min
i
{‖ ~x(t)− ~wi(t) ‖} (1)

During the learning phase, the weight vectors of the
winner and its neighbours were modified according to
Equation 2, whereα is the learning rate (0 < α < 1)
andNc is the topological neighbourhood of the winner.



~wi(t+ 1) = ~wi(t) + α[~x(t)− ~wi(t)], i ∈ Nc (2)

In our experiments, both the learning rate and the topo-
logical neighbourhood size decreased with the training
cycles, as shown in Equations 3 and 4.

α(m) = exp(−10m/M) (3)

Nc =

 3 if 0 < m ≤ 0.2M
2 if 0.2M < m ≤ 0.5M
1 if 0.5M < m ≤M

(4)

M is the total number of training cycles (100 in all ex-
periments).

The PCA networks were trained with the Generalised
Hebbian Algorithm (GHA) (Sanger, 1989). To compute
the output vector~y for a given input vector~x, Equation 5
was used. Equation 6 describes how the weightswij of
the network were adapted.

yi =
J∑
j=1

wijxj (5)

∆wij = αyi[xj −
∑i
k=1 yk.wkj ]

wij(t+ 1) = wij(t) + ∆wij
(6)

For the PCA network it was necessary to compute the
average vector of the training data and then subtract it
from all vectors in the set, in order to obtain zero-mean
data. The learning rate for the PCA network was also
made to decrease exponentially (Equation 7).

α(m) = 0.1 exp(−m/M) (7)

Each neural network architecture was trained and
tested for each image coding scheme, resulting overall in
four different experiments. The data set for training con-
sisted of 50 images, each of an orange football, a blue
cylinder and a green box, acquired against the unstruc-
tured background of the Brooker Laboratory at the Uni-
versity of Essex. The objects were distributed in random
positions and orientations, as shown in Figure 6.

Figure 6: A sample image from the training set

2.3 Experimental Results

2.3.1 Test Images

A set of ten different images of each object in different
locations within the image frame was used to test the

neural networks. These test images were acquired in the
same non-structured environment as the training images,
altough against a different background. Additional target
images were also taken from each object positioned ex-
actly to lie in the central sub-image. Figure 7 depicts a
target image for the orange ball.

Figure 7: Target image of the orange football

2.3.2 Identification of Target Sub-images

For the SOFM architecture, the activation elicited by the
target image was subsequently used to identify that sub-
image in which the target object lay in each of the ten test
images. The measure of similarity between the activations
of the target sub-image and the other sub-images was a
three-dimensional euclidean distance metric, which made
use of the two-dimensional coordinates of the winner unit
in the map and its activation value.

For proper results, the activation value of the winner
must be scaled according to some criteria to make its con-
tribution to the distance measure proportional to the con-
tribution of its coordinates in the SOFM. The scaling cri-
teria employed in our experiments is given by Equation 8,
whereS is the side dimension of the square SOFM (10 in
our experiments).

ac = S× ‖ ~x− ~wc ‖ /max
i
{‖ ~x− ~wi ‖} (8)

The two-dimensional coordinates of the winner units
must also take into account the effect of the torus bound-
aries of the map to compute the distance between them.
Ambiguous coordinates of the winner units were selected
to minimise the euclidean distance between them.

For the the PCA network, a similarity measure of the
same nature was also used. The euclidean distance was
used again to evaluate the output vector of the network for
the target sub-image in comparison to the output vectors
of the sub-images from the test images. However, in the
case of the PCA architecture, the simple n-dimensional
euclidean distance was used without the need of any scal-
ing procedure.

Figure 8 shows an example of the results for the test
images of the orange football using the histogram-based
image coding and the PCA network. It can be seen
from these results that the system is reasonably robust to
small changes in scale and translations of the target object
within the detected sub-images.

To evaluate results, we manually determined the cor-
rect system response as that sub-image within which at
least 25% of the target surface lay. We then composed
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Figure 8: Results obtained using the histogram-
based image coding and the PCA network (the ar-
rows indicate the target object and the rectangles
indicate the sub-image in which the target was de-
tected)

this correct target identification against the one the sys-
tem produced. A summary of the results obtained for all
the four experiments is shown in Table 1.

Table 1: Success rates of the experiments

Average Histograms
Blue Green Orange

Cylinder Box Football
SOFM Network 80% 30% 20%
PCA Network 90% 30% 70%

Average Coarse Coding
Blue Green Orange

Cylinder Box Football
SOFM Network 70% 20% 20%
PCA Network 90% 10% 70%

A set of χ2 tests were also performed on the results
of the experiments. As only a restricted amount of test
images was available, it was necessary to group neigh-
bouring sub-images to satisfy practical constraints of the
χ2 test. This roughly resulted in the division of the image

frame into four regions, as illustrated in Figure 9.
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Figure 9: Sub-image groups used for the χ2 test

The χ2 tests for all experiments have shown statisti-
cally significant correlation between actual and identified
target positions using all of the 30 test images (p = 0.05).

From the previous analyses, it can be inferred that the
PCA network has a better performance for both image
coding techniques in this particular task. In a similar way,
the average colour histograms image coding scheme pro-
vide better results for both neural network architectures.

More importantly, however, is that the results given by
theχ2 test indicate that our approach identifies the target
object’s location at least within four large areas of the im-
age frame. Altough this location information might seem
very coarse at first, it is enough to be used to close the
loop between perception and action, driving the camera’s
pan-tilt unit in two-dimensions to follow the target object
and position it in the centre of the frame.

Our argument is that the simple fact of moving the cam-
era in the direction of the target object in an active vision
approach will not only be feasible, but will also improve
the target localisation performance.

3 Conclusions

The eventual application this research is aimed at is that
of novelty detection and navigation in mobile robots us-
ing visual information. In this paper, we presented a sub-
symbolic, unsupervised mechanism to identify and track
objects within the image frame using passive vision.

The results of our experiments have shown good per-
formances for the blue cylinder when compared to the
performances for the orange football and specially the
green box, which was very poor. This might be attributed
to the fact that the blue cylinder was the biggest object
in the set and thus occupied a greater area within the
image frame, increasing its probability of being identi-
fied. Another plausible explanation resides in the colour
of the cylinder, which offered the greatest contrast against
a mostly yellow background.

Feature extraction using average coarse coding with a
neighbourhood of8 × 8 pixels gives as a result a very
blurry version of the original image, where basically only
colour features are preserved. In spite of reduced details,
the presented unsupervised neural network approaches
were able to identify the target objects reasonably, in-
dicating their suitability to constitute a simple colour-
based object detector. Future work includes testing ap-
proaches using hue, saturation and intensity parameters



(HSI colour model), which may result in improved perfor-
mance in class separation with respect to colour features
(Jain et al., 1995).

Average histograms seem to represent both shape and
colour information and presented a good tolerance to
scale and translation within the detected sub-image. This
image coding scheme provided even better results than
coarse coding. Further tests need to be conducted with
objects that are not present in the training data set, in or-
der to evaluate the robustness of this method to objects
that have never seen before by the system.

The PCA network was faster to train and also had the
advantage of having a simpler similarity measure proce-
dure than the SOFM. However, the convergence of the
algorithm used to train the PCA architecture is very sen-
sitive to several details. This includes the need of zero-
mean data and small learning rate values for the training
phase.

A special conclusion that arises from ourχ2 analysis
is that the combination of techniques employed in our ex-
periments are able to estimate the position of the target
image in four main regions of the image frame. Despite
being very simple, this characteristic is useful enough to
drive an attention mechanism for an active vision system,
according to some preliminary results of our next step in
future work.

Our expectations are that active vision will contribute
to improve the ability of the system to locate the tar-
get object. Several case studies that support better per-
formances of active vision approaches are presented by
Pfeifer and Scheier (Pfeifer and Scheier, 1999). Future
work also includes the development of a “self-motivated”
attention mechanism, in order to eliminate the need of
user-provided target objects. The target is desired to be
automatically selected, and the attention of the system di-
rected to it, by the amount of novelty in its features.

Our initial analysis suggests that the approach pre-
sented in this paper is useful as part of the entire visual
novelty detection system we have in sight. The feature
extraction techniques employed so far are fairly sensitive
to objects with saturated colours, altough further experi-
ments using monochromatic images need to be executed
to confirm this hypothesis.

Acknowledgement

Hugo Vieira Neto is sponsored by a CEFET-PR and
CAPES Foundation fellowship, whose support is grate-
fully acknowledged.

References

Dana H. Ballard. An Introduction to Natural Computa-
tion. MIT Press, Cambridge, MA, 1997.

Ramesh Jain, Rangachar Kasturi, and Brian G. Schunk.
Machine Vision. McGraw-Hill, New York, NY, 1995.

Teuvo Kohonen.Self-Organization and Associative Mem-
ory. Springer-Verlag, Berlin; New York, NY, 1984.

Stephen Marsland, Ulrich Nehmzow, and Jonathan
Shapiro. Detecting novel features of an environment
using habituation. InFrom Animals to Animats: Pro-
ceedings of the 6th International Conference on Simu-
lation of Adaptive Behaviour (SAB’2000), pages 189–
198, Paris, France, 2000. MIT Press.

Stephen Marsland, Ulrich Nehmzow, and Jonathan
Shapiro. Environment-specific novelty detection. In
From Animals to Animats: Proceedings of the 7th In-
ternational Conference on Simulation of Adaptive Be-
haviour (SAB’02), Edinburgh, UK, 2002. MIT Press.

Ulrich Nehmzow. Vision processing for robot learning.
Industrial Robot, 26(2):121–130, 1999.

Rolf Pfeifer and Christian Scheier.Understanding Intel-
ligence. MIT Press, Cambridge, MA, 1999.

Terence D. Sanger. Optimal unsupervised learning in a
single-layer linear feedforward neural network.Neural
Networks, 2:459–473, 1989.


