I3 TEXAS

INSTRUMENTS

TivaWare™ Peripheral Driver Library

USER’S GUIDE

Literature Number: SPMU298E
March 2013 - Revised February 2017

SW-TM4C-DRL-UG-2.1.4.178 Copyright © 2006-2017
Texas Instruments Incorporated

Copyright

Copyright © 2006-2017 Texas Instruments Incorporated. All rights reserved. Tiva and TivaWare are trademarks of Texas Instruments Instruments. ARM
and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

APIease be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semicon-
ductor products and disclaimers thereto appears at the end of this document.

Texas Instruments]

108 Wild Basin, Suite 350 I TEXAS

Austin, TX 78746

www.ti.com/tiva-c INSTRUMENTS

Cortex

Intelligent Processors by ARM®

a
L
oc
w
=
<)
o
|

Revision Information

This is version 2.1.4.178 of this document, last updated on February 22, 2017.

2 February 22, 2017

www.ti.com/tiva-c

Table of Contents

Table of Contents

Copyright e
Revision Information,
1 Introduction o e
2 ProgrammingModel
21 Introduction.
2.2 Direct Register Access Model
2.3 Software DriverModel
2.4 Combining TheModels
3 Analog Comparatorc.ccuuuunn.
3.1 Introduction.
3.2 APlIFunctions
3.3 Programming Example,
4 Analog to Digital Converter (ADC)

41 Introduction.
42 APlFunctions
4.3 Programming Example,
5 AES e e e e e e
51 Introduction.
52 APlIFunctions
5.3 Programming Example,
6 Controller Area Network (CAN)
6.1 Introduction.
6.2 APlFunctions
6.3 CANMessage Objects
6.4 Programming Examples L.
7 CRC. ... e e e
7.1 Introduction.
7.2 APlFunctions
7.3 Programming Example L.
8 DES e e e e e e
8.1 Introduction.
8.2 APlIFunctions
8.3 DES Programming Example
8.4 TDES Programming Example
9 EEPROM ittt ettt e e e e e
9.1 Introduction.
9.2 APlIFunctions
9.3 Programming Example
10 EthernetController.
10.1 Introduction.
10.2 APIFunctions
10.3 Programming Example
11 External Peripheral Interface (EPI)

11.1 Introduction
11.2 APIFunctions

February 22, 2017

Table of Contents

11.3 Programming Example e 235
12 Flash e 237
12.1 Introduction e e 237
12.2 APLFUNCLIONS e 237
12.3 Programming Example 246
13 Floating-Point Unit (FPU) et e e e e e e e e e e e e e e 247
13.1 Introduction e e 247
13.2 APILFuNnctions e e e e 248
13.3 Programming Example 252
14 GPIO . . . e e e e e e e e e e e e e e e e e e 253
14.1 Introduction 253
14.2 APl Functions e 254
14.3 Programming Example 285
15 Hibernation Module @i e e e e e 287
15.1 Introduction e e e e e 287
15.2 APl Functions e 287
15.3 Programming Example 315
16 Inter-Integrated Circuit (I2C) i i i i i i i e e e e e e e e e e 319
16.1 Introduction L e 319
16.2 APl Functions e 320
16.3 Programming Example e 347
17 Interrupt Controller (NVIC) o i i it e e e e e e e e e e e e 349
171 Introduction L . e 349
17.2 APIFunctions L e 350
17.3 Programming Example e 360
18 LCDController (LCD) i i it i e e e e e e e e e e e e et e e e e e e n 363
18.1 Introduction L e 363
18.2 APIFUNCLIONS 363
18.3 Programming Example e 391
19 Memory Protection Unit (MPU) o i e e e e e e e e e 395
19.1 Introduction e 395
19.2 APIFUNCLIONS 395
19.3 Programming Example 402
20 1-WireMaster Module e e e e e e e e 405
20.1 Introduction e 405
20.2 APIFuUNctions e e e 405
20.3 Programming Example e 413
21 Pulse Width Modulator (PWM)t e e e e e e e e e e e e e 415
21.1 Introduction e 415
21.2 APIFuUNctions e e 415
21.3 Programming Example 437
22 Quadrature Encoder (QEI) i i e e e e e e e 439
221 Introduction L L e e e 439
22.2 APIFuNnctions e e 439
22.3 Programming Example L e 449
23 SHA/MDS e 451
23.1 Introduction L L e e 451
23.2 APIFunctions e e 451
4 February 22, 2017

Table of Contents

23.3
23.4

24

241
24.2
24.3

25

25.1
25.2
25.3

26

26.1
26.2
26.3

27

271
27.2
27.3

28

28.1
28.2
28.3

29

29.1
29.2
29.3

30

30.1
30.2
30.3

31

31.1
31.2
31.3

32

32.1
32.2
32.3
32.4
32.5
32.6
32.7

33

33.1
33.2
33.3

34
34.1
34.2

Hashing Programming Example 461
HMAC Programming Example 461
Synchronous Serial Interface (SSI) i i i e e e e 463
Introduction L e 463
APLFUNCHIONS e e e e e 463
Programming Example e 476
Software CRC Module e e e e 479
Introduction e e e e e e e e e 479
APLFUNCLIONS o e e e 479
Programming Example 482
SystemControl e e e e e e e e e e e e e 483
Introduction L e e e e e e e 483
APIFUNCLiONS o e e e 484
Programming Example 521
System Exception Module it e e e e e 523
Introduction L e e e e 523
APIFUNCLiONS o e e 523
Programming Example e e 526
System Tick (SYSTiCK) v i i i e i i e e e e e e e e e 529
Introduction L e e e e 529
APLFUNCONS 529
Programming Example e e 533
1111 535
INtrodUCtioN e e e e e 535
APLFUNCONS e e 536
Programming Example e 558
UART . . . i e e e e e e e e e e e e e e e e e 559
Introduction L e e 559
APLFUNCLONS e 559
Programming Example e 583
UDMA Controller o i i it et e et e e e e e et e e e e 585
Introduction L e e 585
APLFUNCHIONS e e e e 586
Programming Example 606
USB Controller it e et e e e e e e e e e 609
Introduction e e e e e e e 609
General USB APl Functions e e 609
Using USB with the uDMA Controller o 652
Using the integrated USB DMA Controller 656
USB Link Power Management Functions 671
USB UTMI Low Pin Interface (ULPI) e e e 684
Programming Example e 688
Watchdog Timer i it e e e e e e e e et e e 689
Introduction L e 689
APLFUNCHIONS o e e e e e e 689
Programming Example 698
Usingthe ROM i i i e e et e et s e e e e s a e s 701
IntroducCtion e e e e e e e e e e 701
Direct ROM Calls e e e e e e e e 701

February 22, 2017 5

Table of Contents

34.3 Mapped ROM Calls e e 702
34.4 Firmware Update 703
35 ErrorHandling ¢ ¢ it e e e e e e e e e e e 707
IMPORTANT NOTICE e e e e e e e e e e e e et s e e e e e 708

February 22, 2017

Introduction

1 Introduction

The Texas Instruments® TivaWare™ Peripheral Driver Library is a set of drivers for accessing the
peripherals found on the Tiva™ family of ARM® Cortex™-M based microcontrollers. While they are
not drivers in the pure operating system sense (that is, they do not have a common interface and
do not connect into a global device driver infrastructure), they do provide a mechanism that makes
it easy to use the device’s peripherals.

The capabilities and organization of the drivers are governed by the following design goals:

m They are written entirely in C except where absolutely not possible.

m They demonstrate how to use the peripheral in its common mode of operation.
m They are easy to understand.

m They are reasonably efficient in terms of memory and processor usage.

m They are as self-contained as possible.

m Where possible, computations that can be performed at compile time are done there instead
of at run time.

m They can be built with more than one tool chain.
Some consequences of these design goals are:

m The drivers are not necessarily as efficient as they could be (from a code size and/or execution
speed point of view). While the most efficient piece of code for operating a peripheral would be
written in assembly and custom tailored to the specific requirements of the application, further
size optimizations of the drivers would make them more difficult to understand.

m The drivers do not support the full capabilities of the hardware. Some of the peripherals
provide complex capabilities which cannot be utilized by the drivers in this library, though
the existing code can be used as a reference upon which to add support for the additional
capabilities.

m The APIs have a means of removing all error checking code. Because the error checking is
usually only useful during initial program development, it can be removed to improve code size
and speed.

For many applications, the drivers can be used as is. But in some cases, the drivers will have to be
enhanced or rewritten in order to meet the functionality, memory, or processing requirements of the
application. If so, the existing driver can be used as a reference on how to operate the peripheral.

The Driver Library includes drivers for all classes of Tiva microcontrollers. Some drivers and pa-
rameters are only valid for certain classes. See the application report entitled, “Differences Among
Tiva Product Classes” for more information.

The following tool chains are supported:

m Keil™ RealView® Microcontroller Development Kit

m MentorGraphics Sourcery CodeBench for ARM EABI
m |AR Embedded Workbench®

m Texas Instruments Code Composer Studio™

m GNU Compiler Collection(GCC)

February 22, 2017 7

Introduction

Source Code Overview

The following is an overview of the organization of the peripheral driver library source code.

EULA.txt The full text of the End User License Agreement that covers the use of this
software package.

driverlib/ This directory contains the source code for the drivers.

hw_x.h Header files, one per peripheral, that describe all the registers and the bit
fields within those registers for each peripheral. These header files are used
by the drivers to directly access a peripheral, and can be used by application
code to bypass the peripheral driver library API.

inc/ This directory holds the part specific header files used for the direct register

access programming model.

makedefs A set of definitions used by make files.

8 February 22, 2017

Programming Model

2

2.1

2.2

Programming Model

INrOAUCH ON . e 9
Direct Register ACCESS MOAel e s 9
Software Driver MOGEI e e 10
Combining The MOTEIS e e e et 11
Introduction

The peripheral driver library provides support for two programming models: the direct register ac-
cess model and the software driver model. Each model can be used independently or combined,
based on the needs of the application or the programming environment desired by the developer.

Each programming model has advantages and disadvantages. Use of the direct register access
model generally results in smaller and more efficient code than using the software driver model.
However, the direct register access model requires detailed knowledge of the operation of each
register and bit field, as well as their interactions and any sequencing required for proper opera-
tion of the peripheral; the developer is insulated from these details by the software driver model,
generally requiring less time to develop applications.

Direct Register Access Model

In the direct register access model, the peripherals are programmed by the application by writing
values directly into the peripheral’s registers. A set of macros is provided that simplifies this process.
These macros are stored in part-specific header files contained in the inc directory; the name of
the header file matches the part number (for example, the header file for the TM4C123GH6PM
microcontroller is inc/ tm4cl123ghépm.h). By including the header file that matches the part
being used, macros are available for accessing all registers on that part, as well as all bit fields
within those registers. No macros are available for registers that do not exist on the part in question,
making it difficult to access registers that do not exist.

The defines used by the direct register access model follow a nhaming convention that makes it
easier to know how to use a particular macro. The rules are as follows:

m Values that end in _R are used to access the value of a register. For example, SST0_CRO_R
is used to access the CRO register in the SSI0 module.

m Values that end in _M represent the mask for a multi-bit field in a register. If the value placed in
the multi-bit field is a number, there is a macro with the same base name but ending with _s (for
example, SST_CRO_SCR_M and SSTI_CRO_SCR_S). If the value placed into the multi-bit field
is an enumeration, then there are a set of macros with the same base name but ending with
identifiers for the various enumeration values (for example, the SSI_CRO_FRF_M macro de-
fines the bit field, and the SSI_CRO_FRF_NMW, SSI_CRO_FRF_TI,and SSI_CRO_FRF_MOTO
macros provide the enumerations for the bit field).

m Values that end in _S represent the number of bits to shift a value in order to align it with a
multi-bit field. These values match the macro with the same base name but ending with _M.

February 22, 2017 9

Programming Model

2.3

m All other macros represent the value of a bit field.

m All register name macros start with the module name and instance number (for example, SS10
for the first SSI module) and are followed by the name of the register as it appears in the data
sheet (for example, the CRO register in the data sheet results in SST0_CRO_R).

m All register bit fields start with the module name, followed by the register name, and then
followed by the bit field name as it appears in the data sheet. For example, the ScCR bit field in
the CRO register in the SST module is identified by SSI_CRO_SCR. . .. In the case where the
bit field is a single bit, there is nothing further (for example, SSI_CRO_SPH is a single bit in the
CRO register). If the bit field is more than a single bit, there is a mask value (_M) and either a
shift (_s) if the bit field contains a number or a set of enumerations if not.

Given these definitions, the CRO register can be programmed as follows:

SSIO_CRO_R = ((5 << SSI_CRO_SCR_S) | SSI_CRO_SPH | SSI_CRO_SPO |
SSI_CRO_FRF_MOTO | SSI_CRO_DSS_8);

Alternatively, the following has the same effect (although it is not as easy to understand):

SSIO_CRO_R = 0x000005c7;

Extracting the value of the ScRr field from the CRO register is as follows:

ulvalue = (SSIO_CRO_R & SSI_CRO_SCR_M) >> SSIO_CRO_SCR_S;

The GPIO modules have many registers that do not have bit field definitions. For these registers,
the register bits represent the individual GPIO pins; so bit zero in these registers corresponds to
the Px0 pin on the part (where x is replaced by a GPIO module letter), bit one corresponds to the
Px1 pin, and so on.

Note:
The hw_x.h header files that are used by the drivers in the library contain many of the same
definitions as the header files used for direct register access. As a result, the two cannot
both be included into the same source file without the compiler producing warnings about the
redefinition of symbols.

Software Driver Model

In the software driver model, the API provided by the peripheral driver library is used by applications
to control the peripherals. Because these drivers provide complete control of the peripherals in their
normal mode of operation, it is possible to write an entire application without direct access to the
hardware. This method provides for rapid development of the application without requiring detailed
knowledge of how to program the peripherals.

Corresponding to the direct register access model example, the following call also programs the
CRO register in the SSI module (though the register name is hidden by the API):

SSIConfigSetExpClk (SSIO_BASE, 50000000, SSI_FRF_MOTO_MODE_3,
SSI_MODE_MASTER, 1000000, 8);

10

February 22, 2017

Programming Model

The resulting value in the CRO register might not be exactly the same because SSIConfigSetExp-
Clk() may compute a different value for the scR bit field than what was used in the direct register
access model example.

All example applications other than b1inky use the software driver model.

The drivers in the peripheral driver library are described in the remaining chapters in this document.
They combine to form the software driver model.

2.4 Combining The Models

The direct register access model and software driver model can be used together in a single ap-
plication, allowing the most appropriate model to be applied as needed to any particular situation
within the application. For example, the software driver model can be used to configure the periph-
erals (because this is not performance critical) and the direct register access model can be used
for operation of the peripheral (which may be more performance critical). Or, the software driver
model can be used for peripherals that are not performance critical (such as a UART used for data
logging) and the direct register access model for performance critical peripherals (such as the ADC
module used to capture real-time analog data).

February 22, 2017 11

Programming Model

12 February 22, 2017

Analog Comparator

3.1

3.2

3.2.1

Analog Comparator

I OAUCH ON ... e e e e e e e s 13
AP FUNCHIONS .. e e e e 13
Programming EXamIPIe ... e 19
Introduction

The comparator API provides a set of functions for programming and using the analog comparators.
A comparator can compare a test voltage against an individual external reference voltage, a shared
single external reference voltage, or a shared internal reference voltage. It can provide its output
to a device pin, acting as a replacement for an analog comparator on the board, or it can be
used to signal the application via interrupts or triggers to the ADC to start capturing a sample
sequence. The interrupt generation logic is independent from the ADC triggering logic. As a result,
the comparator can generate an interrupt based on one event and an ADC trigger based on another
event. For example, an interrupt can be generated on a rising edge and the ADC triggered on a
falling edge.

This driver is contained in driverlib/comp.c, with driverlib/comp.h containing the API
declarations for use by applications.

API Functions

Functions

void ComparatorConfigure (uint32_t ui32Base, uint32_t ui32Comp, uint32_t ui32Config)

void ComparatorIntClear (uint32_t ui32Base, uint32_t ui32Comp)

void ComparatorIntDisable (uint32_t ui32Base, uint32_t ui32Comp)

void ComparatorintEnable (uint32_t ui32Base, uint32_t ui32Comp)

void ComparatorintRegister (uint32_t ui32Base, uint32_t ui32Comp, void (xpfnHandler)(void))
bool ComparatorintStatus (uint32_t ui32Base, uint32_t ui32Comp, bool bMasked)

void ComparatorintUnregister (uint32_t ui32Base, uint32_t ui32Comp)

void ComparatorRefSet (uint32_t ui32Base, uint32_t ui32Ref)

m bool ComparatorValueGet (uint32_t ui32Base, uint32_t ui32Comp)

Detailed Description

The comparator API is fairly simple, like the comparators themselves. There are functions for
configuring a comparator and reading its output (ComparatorConfigure(), ComparatorRefSet() and
ComparatorValueGet()) and functions for dealing with an interrupt handler for the comparator (Com-
paratorIntRegister(), ComparatorintUnregister(), ComparatorintEnable(), ComparatorintDisable(),
ComparatorIntStatus(), and ComparatorintClear()).

February 22, 2017 13

Analog Comparator

3.2.2 Function Documentation
3.2.2.1 ComparatorConfigure
Configures a comparator.
Prototype:
void
ComparatorConfigure (uint32_t ui32Base,
uint32_t ui32Comp,
uint32_t ui32Config)
Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator to configure.
ui32Config is the configuration of the comparator.
Description:
This function configures a comparator. The wi32Config parameter is the result of a logical
OR operation between the COMP_TRIG_xxx, COMP_INT_xxx, COMP_ASRCP_xxx, and
COMP_OUTPUT _xxx values.
The COMP_TRIG_xxx term can take on the following values:
m COMP_TRIG_NONE to have no trigger to the ADC.
m COMP_TRIG_HIGH to trigger the ADC when the comparator output is high.
m COMP_TRIG_LOW to trigger the ADC when the comparator output is low.
m COMP_TRIG_FALL to trigger the ADC when the comparator output goes low.
m COMP_TRIG_RISE to trigger the ADC when the comparator output goes high.
m COMP_TRIG_BOTH to trigger the ADC when the comparator output goes low or high.
The COMP_INT_xxx term can take on the following values:
m COMP_INT_HIGH to generate an interrupt when the comparator output is high.
m COMP_INT_LOW to generate an interrupt when the comparator output is low.
m COMP_INT_FALL to generate an interrupt when the comparator output goes low.
m COMP_INT_RISE to generate an interrupt when the comparator output goes high.
m COMP_INT_BOTH to generate an interrupt when the comparator output goes low or high.
The COMP_ASRCP_xxx term can take on the following values:
m COMP_ASRCP_PIN to use the dedicated Comp+ pin as the reference voltage.
m COMP_ASRCP_PINO to use the Comp0+ pin as the reference voltage (this the same as
COMP_ASRCP_PIN for the comparator 0).
m COMP_ASRCP_REF to use the internally generated voltage as the reference voltage.
The COMP_OUTPUT_xxx term can take on the following values:
m COMP_OUTPUT_NORMAL to enable a non-inverted output from the comparator to a
device pin.
= COMP_OUTPUT_INVERT to enable an inverted output from the comparator to a device
pin.
Returns:
None.
14 February 22, 2017

Analog Comparator

3.2.2.2 ComparatorIntClear

Clears a comparator interrupt.

Prototype:

void
ComparatorIntClear (uint32_t ui32Base,
uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.

ui32Comp is the index of the comparator.

Description:
The comparator interrupt is cleared, so that it no longer asserts. This function must be called in
the interrupt handler to keep the handler from being called again immediately upon exit. Note
that for a level-triggered interrupt, the interrupt cannot be cleared until it stops asserting.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

3.2.2.3 ComparatorintDisable

Disables the comparator interrupt.

Prototype:

void
ComparatorIntDisable (uint32_t ui32Base,
uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.

ui32Comp is the index of the comparator.

Description:
This function disables generation of an interrupt from the specified comparator. Only enabled
comparator interrupts can be reflected to the processor.

Returns:
None.

February 22, 2017 15

Analog Comparator

3.2.2.4 ComparatorintEnable

Enables the comparator interrupt.

Prototype:

void
ComparatorIntEnable (uint32_t ui32Base,
uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.

ui32Comp is the index of the comparator.

Description:
This function enables generation of an interrupt from the specified comparator. Only enabled
comparator interrupts can be reflected to the processor.

Returns:
None.

3.2.2.5 ComparatorintRegister

Registers an interrupt handler for the comparator interrupt.

Prototype:
void
ComparatorIntRegister (uint32_t ui32Base,
uint32_t ui32Comp,
void (xpfnHandler) (void))

Parameters:
ui32Base is the base address of the comparator module.

ui32Comp is the index of the comparator.
pfnHandler is a pointer to the function to be called when the comparator interrupt occurs.

Description:
This function sets the handler to be called when the comparator interrupt occurs and enables
the interrupt in the interrupt controller. It is the interrupt handler’s responsibility to clear the
interrupt source via ComparatorintClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

3.2.2.6 ComparatorintStatus

Gets the current interrupt status.

16 February 22, 2017

Analog Comparator

3.2.2.7

3.2.2.8

Prototype:
bool
ComparatorIntStatus (uint32_t ui32Base,
uint32_t ui32Comp,
bool bMasked)

Parameters:
ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

bMasked is false if the raw interrupt status is required and true if the masked interrupt status
is required.

Description:
This function returns the interrupt status for the comparator. Either the raw or the masked
interrupt status can be returned.

Returns:
true if the interrupt is asserted and false if it is not asserted.

ComparatorintUnregister

Unregisters an interrupt handler for a comparator interrupt.

Prototype:

void
ComparatorIntUnregister (uint32_t ui32Base,
uint32_t ui32Comp)

Parameters:
ui32Base is the base address of the comparator module.

ui32Comp is the index of the comparator.

Description:
This function clears the handler to be called when a comparator interrupt occurs. This function
also masks off the interrupt in the interrupt controller so that the interrupt handler no longer is
called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

ComparatorRefSet

Sets the internal reference voltage.

Prototype:
void
ComparatorRefSet (uint32_t ui32Base,
uint32_t ui32Ref)

February 22, 2017 17

Analog Comparator

Parameters:
ui32Base is the base address of the comparator module.

ui32Ref is the desired reference voltage.

Description:
This function sets the internal reference voltage value. The voltage is specified as one of the
following values:

m COMP_REF_OFF to turn off the reference voltage

m COMP_REF_0V to set the reference voltage to 0 V

m COMP_REF_0_1375V to set the reference voltage to 0.1375 V

m COMP_REF_0_275V to set the reference voltage to 0.275 V

m COMP_REF_0_4125V to set the reference voltage to 0.4125 V

m COMP_REF_0_55V to set the reference voltage to 0.55 V

m COMP_REF_0_6875V to set the reference voltage to 0.6875 V

m COMP_REF_0_825V to set the reference voltage to 0.825 V

m COMP_REF_0_928125V to set the reference voltage to 0.928125 V
m COMP_REF_0 9625V to set the reference voltage to 0.9625 V

m COMP_REF_1_03125V to set the reference voltage to 1.03125 V

m COMP_REF_1_134375V to set the reference voltage to 1.134375 V
m COMP_REF_1_1V to set the reference voltage to 1.1 V

m COMP_REF_1_2375V to set the reference voltage to 1.2375 V

m COMP_REF_1_340625V to set the reference voltage to 1.340625 V
m COMP_REF_1_375V to set the reference voltage to 1.375V

m COMP_REF_1_44375V to set the reference voltage to 1.44375 V

m COMP_REF_1_5125V to set the reference voltage to 1.5125 V

m COMP_REF_1_546875V to set the reference voltage to 1.546875 V
m COMP_REF_1_65V to set the reference voltage to 1.65 V

m COMP_REF_1_753125V to set the reference voltage to 1.753125 V
m COMP_REF_1_7875V to set the reference voltage to 1.7875 V

m COMP_REF_1_85625V to set the reference voltage to 1.85625 V

m COMP_REF_1_925V to set the reference voltage to 1.925 V

m COMP_REF_1_959375V to set the reference voltage to 1.959375 V
m COMP_REF_2 0625V to set the reference voltage to 2.0625 V

m COMP_REF_2_165625V to set the reference voltage to 2.165625 V
m COMP_REF_2_26875V to set the reference voltage to 2.26875 V

m COMP_REF_2_371875V to set the reference voltage to 2.371875 V

Returns:
None.

3.2.2.9 ComparatorValueGet

Gets the current comparator output value.

Prototype:
bool
ComparatorValueGet (uint32_t ui32Base,

uint32_t ui32Comp)

18

February 22, 2017

Analog Comparator

Parameters:

ui32Base is the base address of the comparator module.
ui32Comp is the index of the comparator.

Description:

This function retrieves the current value of the comparator output.

Returns:

Returns true if the comparator output is high and false if the comparator output is low.

3.3 Programming Example

The following example shows how to use the comparator API to configure the comparator and read
its value.

//

// Enable the COMP module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_COMPO) ;

//

// Wait for the COMP module to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_COMPO))
{

}

//
// Configure the internal voltage reference.
//
ComparatorRefSet (COMP_BASE, COMP_REF_1_65V);

//

// Configure comparator 0.

//

ComparatorConfigure (COMP_BASE, O,
(COMP_TRIG_NONE | COMP_INT_BOTH |
COMP_ASRCP_REF | COMP_OUTPUT_NORMAL)) ;

//
// Delay for some time...

!/

//

// Read the comparator output value.
//

ComparatorValueGet (COMP_BASE, 0);

February 22, 2017

19

Analog Comparator

20 February 22, 2017

Analog to Digital Converter (ADC)

4.1

Analog to Digital Converter (ADC)

I OAUCH ON ... e e e e e e e s 21
AP FUNCHIONS .. e e e e 22
Programming EXamIPIe ... e 46
Introduction

The analog to digital converter (ADC) API provides a set of functions for programming and operating
the ADC. Functions are provided to configure the sample sequencers, read the captured data,
register a sample sequence interrupt handler, and handle interrupt masking/clearing.

Depending on the features of the individual microcontroller, the ADC supports up to twenty-four
input channels plus an internal temperature sensor. Four sampling sequencers, each with con-
figurable trigger events, can be captured. The first sequencer captures up to eight samples, the
second and third sequencers capture up to four samples, and the fourth sequencer captures a sin-
gle sample. Each sample can be the same channel, different channels, or any combination in any
order.

The sample sequencers have configurable priorities that determine the order in which they are
captured when multiple triggers occur simultaneously. The highest priority sequencer that is cur-
rently triggered is sampled first. Care must be taken with triggers that occur frequently (such as the
“always” trigger); if their priority is too high, it is possible to starve the lower priority sequencers.

Hardware oversampling of the ADC data is available for improved accuracy. An oversampling factor
of 2x, 4x, 8x, 16x, 32x, or 64x is supported, but reduces the throughput of the ADC by a corre-
sponding factor. Hardware oversampling is applied uniformly across all sample sequencers.

Software oversampling of the ADC data is also available (even when hardware oversampling is
available). An oversampling factor of 2x, 4x, or 8x is supported, but reduces the depth of the
sample sequencers by a corresponding amount. For example, the first sample sequencer captures
eight samples; in 4x oversampling mode, it can only capture two samples because the first four
samples are used for the first oversampled value and the second four samples are used for the
second oversampled value. The amount of software oversampling is configured on a per sample
sequencer basis.

A more sophisticated software oversampling can be used to eliminate the reduction of the sample
sequencer depth. By increasing the ADC trigger rate by 4x (for example) and averaging four trig-
gers worth of data, 4x oversampling is achieved without any loss of sample sequencer capability. In
this case, an increase in the number of ADC triggers (and presumably ADC interrupts) is the conse-
guence. Because this method requires adjustments outside of the ADC driver itself, it is not directly
supported by the driver (though nothing in the driver prevents it). The software oversampling APls
should not be used in this case.

This driver is contained in driverlib/adc.c, with driverlib/adc.h containing the APl dec-
larations for use by applications.

February 22, 2017 21

Analog to Digital Converter (ADC)

4.2

API Functions

Functions

bool ADCBusy (uint32_t ui32Base)

uint32_t ADCClockConfigGet (uint32_t ui32Base, uint32_t xpui32ClockDiv)

void ADCClockConfigSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32ClockDiv)
void ADCComparatorConfigure (uint32_t ui32Base, uint32_t ui32Comp, uint32_t ui32Config)
void ADCComparatorintClear (uint32_t ui32Base, uint32_t ui32Status)

void ADCComparatorintDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADCComparatorintEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)

uint32_t ADCComparatorintStatus (uint32_t ui32Base)

void ADCComparatorRegionSet (uint32_t ui32Base, uint32_t ui32Comp, uint32_t ui32LowRef,
uint32_t ui32HighRef)

void ADCComparatorReset (uint32_t ui32Base, uint32_t ui32Comp, bool bTrigger, bool bin-
terrupt)

void ADCHardwareOversampleConfigure (uint32_t ui32Base, uint32_t ui32Factor)
void ADCIntClear (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADClIntClearEx (uint32_t ui32Base, uint32_t ui32IntFlags)

void ADClIntDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADClIntDisableEx (uint32_t ui32Base, uint32_t ui32IntFlags)

void ADCIntEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADCIntEnableEx (uint32_t ui32Base, uint32_t ui32IntFlags)

void ADCIntRegister (uint32_t ui32Base, uint82_t ui32SequenceNum, void
(+xpfnHandler)(void))

uint32_t ADCIntStatus (uint32_t ui32Base, uint32_t ui32SequenceNum, bool bMasked)
uint32_t ADCIntStatusEx (uint32_t ui32Base, bool bMasked)

void ADClIntUnregister (uint32_t ui32Base, uint32_t ui32SequenceNum)

uint32_t ADCPhaseDelayGet (uint32_t ui32Base)

void ADCPhaseDelaySet (uint32_t ui32Base, uint32_t ui32Phase)

void ADCProcessorTrigger (uint32_t ui32Base, uint32_t ui32SequenceNum)

uint32_t ADCReferenceGet (uint32_t ui32Base)

void ADCReferenceSet (uint32_t ui32Base, uint32_t ui32Ref)

void ADCSequenceConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum, uint32_t
ui32Trigger, uint32_t uid2Priority)

int32_t ADCSequenceDataGet (uint32_t ui82Base, uint32_t ui32SequenceNum, uint32_t
xpui32Buffer)

void ADCSequenceDisable (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADCSequenceDMADisable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceDMAEnNable (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceEnable (uint32_t ui32Base, uint32_t ui32SequenceNum)
int32_t ADCSequenceOverflow (uint32_t ui32Base, uint32_t ui32SequenceNum)
void ADCSequenceOverflowClear (uint32_t ui32Base, uint32_t ui32SequenceNum)

void ADCSequenceStepConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum, uint32_t
ui32Step, uint32_t ui32Config)

int32_t ADCSequenceUnderflow (uint32_t ui32Base, uint32_t ui32SequenceNum)

22

February 22, 2017

Analog to Digital Converter (ADC)

4.2.1

422

4.2.2.1

m void ADCSequenceUnderflowClear (uint32_t ui32Base, uint32_t ui32SequenceNum)

m void ADCSoftwareOversampleConfigure (uint32_t ui32Base, uint32_t ui32SequenceNum,
uint32_t ui32Factor)

m void ADCSoftwareOversampleDataGet (uint32_t ui32Base, uint32_t ui32SequenceNum,
uint32_t xpui32Buffer, uint32_t ui32Count)

® void ADCSoftwareOversampleStepConfigure (uint32_t ui32Base, uint32_t
ui32SequenceNum, uint32_t ui32Step, uint32_t ui32Config)

Detailed Description

The analog to digital converter APl is broken into three groups of functions: those that deal with the
sample sequencers, those that deal with the processor trigger, and those that deal with interrupt
handling.

The sample sequencers are configured with ADCSequenceConfigure() and ADCSequenceStep-
Configure(). They are enabled and disabled with ADCSequenceEnable() and ADCSequenceDis-
able(). The captured data is obtained with ADCSequenceDataGet(). Sample sequencer FIFO
overflow and underflow is managed with ADCSequenceOverflow(), ADCSequenceOverflowClear(),
ADCSequenceUnderflow(), and ADCSequenceUnderflowClear().

Hardware oversampling of the ADC is controlled with ADCHardwareOversampleConfigure(). Soft-
ware oversampling of the ADC is controlled with ADCSoftwareOversampleConfigure(), ADCSoft-
wareOversampleStepConfigure(), and ADCSoftwareOversampleDataGet().

The processor trigger is generated with ADCProcessorTrigger().

The interrupt handler for the ADC sample sequencer interrupts are managed with ADCIntRegister()
and ADClIntUnregister(). The sample sequencer interrupt sources are managed with ADCIntDis-
able(), ADCIntEnable(), ADCIntStatus(), and ADCIntClear().

Function Documentation

ADCBusy

Determines whether the ADC is busy or not.

Prototype:
bool
ADCBusy (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the ADC.

Description:
This function allows the caller to determine whether or not the ADC is currently sampling . If
false is returned, then the ADC is not sampling data.

Use this function to detect that the ADC is finished sampling data before putting the device
into deep sleep. Before using this function, it is highly recommended that the event trigger
is changed to ADC_TRIGGER_NEVER on all enabled sequencers to prevent the ADC from
starting after checking the busy status.

February 22, 2017 23

Analog to Digital Converter (ADC)

4222

4.2.2.3

Returns:
Returns true if the ADC is sampling or false if all samples are complete.

ADCClockConfigGet

Returns the clock configuration for the ADC.

Prototype:
uint32_t
ADCClockConfigGet (uint32_t ui32Base,
uint32_t xpui32ClockDiv)

Parameters:
ui32Base is the base address of the ADC to configure, which must always be ADC0O_BASE.

pui32ClockDiv is a pointer to the input clock divider for the clock selected by the
ADC_CLOCK_SRC in use by the ADCs.

Description:
This function returns the ADC clock configuration and the clock divider for the ADCs.

Example: Read the current ADC clock configuration.

uint32_t ui32Config, uwi32ClockDiv;

//

// Read the current ADC clock configuration.

//

ui32Config = ADCClockConfigGet (ADCO_BASE, &ui32ClockDiv);

Returns:
The current clock configuration of the ADC defined as a combina-
tion of one of ADC_CLOCK_SRC_PLL, ADC_CLOCK_SRC_PIOSC,
ADC_CLOCK_SRC_MOSC, or ADC_CLOCK_SRC_ALTCLK logical ORed with one of
ADC_CLOCK_RATE_FULL, ADC_CLOCK_RATE_HALF, ADC_CLOCK_RATE_QUARTER,
or ADC_CLOCK_RATE_EIGHTH. See ADCClockConfigSet() for more information on these
values.

ADCClockConfigSet

Sets the clock configuration for the ADC.

Prototype:
void
ADCClockConfigSet (uint32_t ui32Base,
uint32_t ui32Config,
uint32_t ui32ClockDiv)

Parameters:
ui32Base is the base address of the ADC to configure, which must always be ADC0O_BASE.
ui32Config is a combination of the ADC_CLOCK_SRC_ and ADC_CLOCK_RATE_x values
used to configure the ADC clock input.
ui32ClockDiv is the input clock divider for the clock selected by the ADC_CLOCK_SRC value.

24

February 22, 2017

Analog to Digital Converter (ADC)

Description:

This function is used to configure the input clock to the ADC modules. The clock configuration
is shared across ADC units so ui32Base must always be ADCO_BASE. The ui32Config value
is logical OR of one of the ADC_CLOCK_RATE_ and one of the ADC_CLOCK_SRC_ values
defined below. The ADC_CLOCK_SRC_:x values determine the input clock for the ADC. Not
all values are available on all devices so check the device data sheet to determine value con-
figuration options. Regardless of the source, the final frequency for TM4C123x devices must
be 16 MHz and for TM4C129x parts after dividing must be between 16 and 32 MHz.

Note:
For TM4C123x devices, if the PLL is enabled, the PLL/25 is used as the ADC clock unless
ADC_CLOCK_SRC_PIOSC is specified. If the PLL is disabled, the MOSC is used as the clock
source unless ADC_CLOCK_SRC_PIOSC is specified.

m ADC_CLOCK_SRC_PLL - The main PLL output (TM4x129 class only).
m ADC_CLOCK SRC PIOSC - The internal PIOSC at 16 MHz.

m ADC_CLOCK_SRC_ALTCLK - The output of the ALTCLK in the system control module
(TM4x129 class only).

m ADC_CLOCK_SRC_MOSC - The external MOSC (TM4x129 class only).

ADC_CLOCK_RATE values control how often samples are provided back to the application. The
values are the following:

m ADC_CLOCK_RATE_FULL - All samples.

m ADC_CLOCK_RATE_HALF - Every other sample.

m ADC_CLOCK_RATE_QUARTER - Every fourth sample.
m ADC_CLOCK_RATE_EIGHTH - Every either sample.

The ui2ClockDiv parameter allows for dividing a higher frequency down into the valid range for the
ADCs. This parameter is typically only used ADC_CLOCK_SRC_PLL option because it is the only
clock value that can be with the in the correct range to use the divider. The actual value ranges
from 1 to 64.

Example: ADC Clock Configurations

//

// Configure the ADC to use PIOSC divided by one (16 MHz) and sample at

// half the rate.

//

ADCClockConfigSet (ADCO_BASE, ADC_CLOCK_SRC_PIOSC | ADC_CLOCK_RATE_HALF, 1);

//

// Configure the ADC to use PLL at 480 MHz divided by 24 to get an ADC

// clock of 20 MHz.

//

ADCClockConfigSet (ADCO_BASE, ADC_CLOCK_SRC_PLL | ADC_CLOCK_RATE_FULL, 24);

Returns:
None.

February 22, 2017 25

Analog to Digital Converter (ADC)

4224 ADCComparatorConfigure
Configures an ADC digital comparator.
Prototype:
void
ADCComparatorConfigure (uint32_t ui32Base,
uint32_t ui32Comp,
uint32_t ui32Config)
Parameters:
ui32Base is the base address of the ADC module.
ui32Comp is the index of the comparator to configure.
ui32Config is the configuration of the comparator.
Description:
This function configures a comparator. The ui32Config parameter is the result of a logical OR
operation between the ADC_COMP_TRIG_xxx, and ADC_COMP_INT_xxx values.
The ADC_COMP_TRIG_xxx term can take on the following values:

m ADC_COMP_TRIG_NONE to never trigger PWM fault condition.

m ADC_COMP_TRIG_LOW_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the low-band.

m ADC_COMP_TRIG_LOW_ONCE to trigger PWM fault condition once when ADC output
transitions into the low-band.

m ADC_COMP_TRIG_LOW_HALWAYS to always trigger PWM fault condition when ADC
output is in the low-band only if ADC output has been in the high-band since the last
trigger output.

m ADC_COMP_TRIG_LOW_HONCE to trigger PWM fault condition once when ADC output
transitions into low-band only if ADC output has been in the high-band since the last trigger
output.

m ADC_COMP_TRIG_MID_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the mid-band.

m ADC_COMP_TRIG_MID_ONCE to trigger PWM fault condition once when ADC output
transitions into the mid-band.

m ADC_COMP_TRIG_HIGH_ALWAYS to always trigger PWM fault condition when ADC out-
put is in the high-band.

m ADC_COMP_TRIG_HIGH_ONCE to trigger PWM fault condition once when ADC output
transitions into the high-band.

m ADC_COMP_TRIG_HIGH_HALWAYS to always trigger PWM fault condition when ADC
output is in the high-band only if ADC output has been in the low-band since the last
trigger output.

m ADC_COMP_TRIG_HIGH_HONCE to trigger PWM fault condition once when ADC output
transitions into high-band only if ADC output has been in the low-band since the last trigger
output.

The ADC_COMP_INT_xxx term can take on the following values:

m ADC_COMP_INT_NONE to never generate ADC interrupt.

m ADC_COMP_INT_LOW_ALWAYS to always generate ADC interrupt when ADC output is
in the low-band.

26 February 22, 2017

Analog to Digital Converter (ADC)

4225

4.2.2.6

ADC_COMP_INT_LOW_ONCE to generate ADC interrupt once when ADC output transi-
tions into the low-band.

ADC_COMP_INT_LOW_HALWAYS to always generate ADC interrupt when ADC output
is in the low-band only if ADC output has been in the high-band since the last trigger output.
ADC_COMP_INT_LOW_HONCE to generate ADC interrupt once when ADC output tran-
sitions into low-band only if ADC output has been in the high-band since the last trigger
output.

ADC_COMP_INT_MID_ALWAYS to always generate ADC interrupt when ADC output is
in the mid-band.

ADC_COMP_INT_MID_ONCE to generate ADC interrupt once when ADC output transi-
tions into the mid-band.

ADC_COMP_INT_HIGH_ALWAYS to always generate ADC interrupt when ADC output is
in the high-band.

ADC_COMP_INT_HIGH_ONCE to generate ADC interrupt once when ADC output transi-
tions into the high-band.

ADC_COMP_INT_HIGH_HALWAYS to always generate ADC interrupt when ADC output
is in the high-band only if ADC output has been in the low-band since the last trigger output.
ADC_COMP_INT_HIGH_HONCE to generate ADC interrupt once when ADC output tran-
sitions into high-band only if ADC output has been in the low-band since the last trigger

output.

Returns:
None.

ADCComparatorintClear

Clears sample sequence comparator interrupt source.

Prototype:
void
ADCComparatorIntClear (uint32_t ui32Base,
uint32_t ui32Status)

Parameters:
ui32Base is the base address of the ADC module.

ui32Status is the bit-mapped interrupts status to clear.

Description:
The specified interrupt status is cleared.

Returns:
None.

ADCComparatorintDisable

Disables a sample sequence comparator interrupt.

February 22, 2017

27

Analog to Digital Converter (ADC)

Prototype:
void
ADCComparatorIntDisable (uint32_t ui32Base,
uint32_t ui32SegquenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
This function disables the requested sample sequence comparator interrupt.

Returns:
None.
4.2.2.7 ADCComparatorintEnable
Enables a sample sequence comparator interrupt.
Prototype:
void
ADCComparatorIntEnable (uint32_t ui32Base,
uint32_t ui32SequenceNum)
Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
Description:
This function enables the requested sample sequence comparator interrupt.
Returns:
None.
4.2.2.8 ADCComparatorintStatus
Gets the current comparator interrupt status.
Prototype:
uint32_t
ADCComparatorIntStatus (uint32_t ui32Base)
Parameters:
ui32Base is the base address of the ADC module.
Description:
This function returns the digital comparator interrupt status bits. This status is sequence ag-
nostic.
Returns:
The current comparator interrupt status.
28 February 22, 2017

Analog to Digital Converter (ADC)

4229

4.2.210

ADCComparatorRegionSet

Defines the ADC digital comparator regions.

Prototype:
void
ADCComparatorRegionSet (uint32_t ui32Base,
uint32_t ui32Comp,
uint32_t ui32LowRef,
uint32_t ui32HighRef)

Parameters:
ui32Base is the base address of the ADC module.

ui32Comp is the index of the comparator to configure.
ui32LowRef is the reference point for the low/mid band threshold.
ui32HighRef is the reference point for the mid/high band threshold.

Description:
The ADC digital comparator operation is based on three ADC value regions:

m low-band is defined as any ADC value less than or equal to the ui32LowRef value.

m mid-band is defined as any ADC value greater than the ui32LowRef value but less than
or equal to the ui32HighRef value.

m high-band is defined as any ADC value greater than the ui32HighRef value.

Returns:
None.

ADCComparatorReset

Resets the current ADC digital comparator conditions.

Prototype:
void
ADCComparatorReset (uint32_t ui32Base,
uint32_t ui32Comp,
bool bTrigger,
bool bInterrupt)

Parameters:
ui32Base is the base address of the ADC module.

ui32Comp is the index of the comparator.
bTrigger is the flag to indicate reset of Trigger conditions.
binterrupt is the flag to indicate reset of Interrupt conditions.

Description:
Because the digital comparator uses current and previous ADC values, this function allows
the comparator to be reset to its initial value to prevent stale data from being used when a
sequence is enabled.

Returns:
None.

February 22, 2017 29

Analog to Digital Converter (ADC)

4.2.2.11 ADCHardwareOversampleConfigure
Configures the hardware oversampling factor of the ADC.
Prototype:
void
ADCHardwareOversampleConfigure (uint32_t ui32Base,
uint32_t ui32Factor)
Parameters:
ui32Base is the base address of the ADC module.
ui32Factor is the number of samples to be averaged.
Description:
This function configures the hardware oversampling for the ADC, which can be used to provide
better resolution on the sampled data. Oversampling is accomplished by averaging multiple
samples from the same analog input. Six different oversampling rates are supported; 2x, 4x,
8x, 16x, 32x, and 64x. Specifying an oversampling factor of zero disables hardware oversam-
pling.
Hardware oversampling applies uniformly to all sample sequencers. It does not reduce the
depth of the sample sequencers like the software oversampling APIs; each sample written into
the sample sequencer FIFO is a fully oversampled analog input reading.
Enabling hardware averaging increases the precision of the ADC at the cost of throughput. For
example, enabling 4x oversampling reduces the throughput of a 250 k samples/second ADC
to 62.5 k samples/second.
Returns:
None.
4.2.2.12 ADCIntClear
Clears sample sequence interrupt source.
Prototype:
void
ADCIntClear (uint32_t ui32Base,
uint32_t ui32SequenceNum)
Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
Description:
The specified sample sequence interrupt is cleared, so that it no longer asserts. This func-
tion must be called in the interrupt handler to keep the interrupt from being triggered again
immediately upon exit.
Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
30 February 22, 2017

Analog to Digital Converter (ADC)

returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

42213 ADCIntClearEx

Clears the specified ADC interrupt sources.

Prototype:
void
ADCIntClearEx (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the ADC port.

ui32intFlags is the bit mask of the interrupt sources to disable.

Description:
Clears the interrupt for the specified interrupt source(s).

The ui32IntFlags parameter is the logical OR of the ADC_INT_x values. See the ADCIntEn-
ableEx() function for the list of possible ADC_INT:x values.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

4.2.2.14 ADCIntDisable

Disables a sample sequence interrupt.

Prototype:
void
ADCIntDisable (uint32_t ui32Base,
uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

February 22, 2017 31

Analog to Digital Converter (ADC)

Description:
This function disables the requested sample sequence interrupt.

Returns:
None.

4.2.2.15 ADCIntDisableEx

Disables ADC interrupt sources.

Prototype:
void
ADCIntDisableEx (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the ADC module.

ui32intFlags is the bit mask of the interrupt sources to disable.

Description:
This function disables the indicated ADC interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

m ADC_INT_SSO - interrupt due to ADC sample sequence 0.

m ADC_INT_SS1 - interrupt due to ADC sample sequence 1.

m ADC_INT_SS2 - interrupt due to ADC sample sequence 2.

m ADC_INT_SS3 - interrupt due to ADC sample sequence 3.

m ADC_INT_DMA_SSO - interrupt due to DMA on ADC sample sequence 0.

m ADC_INT_DMA_SS1 - interrupt due to DMA on ADC sample sequence 1.

m ADC_INT_DMA_SS2 - interrupt due to DMA on ADC sample sequence 2.

m ADC_INT_DMA_SS3 - interrupt due to DMA on ADC sample sequence 3.

m ADC_INT_DCON_SSO - interrupt due to digital comparator on ADC sample sequence 0.
m ADC_INT_DCON_SS1 - interrupt due to digital comparator on ADC sample sequence 1.
m ADC_INT_DCON_SS2 - interrupt due to digital comparator on ADC sample sequence 2.
m ADC_INT_DCON_SS3 - interrupt due to digital comparator on ADC sample sequence 3.

Returns:
None.

42216 ADCIntEnable

Enables a sample sequence interrupt.

Prototype:
void
ADCIntEnable (uint32_t ui32Base,
uint32_t ui32SequenceNum)

32 February 22, 2017

Analog to Digital Converter (ADC)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
This function enables the requested sample sequence interrupt. Any outstanding interrupts
are cleared before enabling the sample sequence interrupt.

Returns:
None.

42217 ADCIntEnableEx

Enables ADC interrupt sources.

Prototype:
void
ADCIntEnableEx (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the ADC module.

ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
This function enables the indicated ADC interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

m ADC_INT_SSO - interrupt due to ADC sample sequence 0.

m ADC_INT_SS1 - interrupt due to ADC sample sequence 1.

m ADC_INT_SS2 - interrupt due to ADC sample sequence 2.

m ADC_INT_SS3 - interrupt due to ADC sample sequence 3.

m ADC_INT_DMA_SSO - interrupt due to DMA on ADC sample sequence 0.

m ADC_INT_DMA_SS1 - interrupt due to DMA on ADC sample sequence 1.

m ADC_INT_DMA_SS2 - interrupt due to DMA on ADC sample sequence 2.

m ADC_INT_DMA_SS3 - interrupt due to DMA on ADC sample sequence 3.

m ADC_INT_DCON_SSO - interrupt due to digital comparator on ADC sample sequence 0.
m ADC_INT_DCON_SS1 - interrupt due to digital comparator on ADC sample sequence 1.
m ADC_INT_DCON_SS2 - interrupt due to digital comparator on ADC sample sequence 2.
m ADC_INT_DCON_SS3 - interrupt due to digital comparator on ADC sample sequence 3.

Returns:
None.

4.2.2.18 ADCIntRegister

Registers an interrupt handler for an ADC interrupt.

February 22, 2017 33

Analog to Digital Converter (ADC)

4.2.219

4.2.2.20

Prototype:
void
ADCIntRegister (uint32_t ui32Base,
uint32_t ui32SequenceNum,
void (*xpfnHandler) (void))

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.

pfnHandler is a pointer to the function to be called when the ADC sample sequence interrupt
occurs.

Description:
This function sets the handler to be called when a sample sequence interrupt occurs. This
function enables the global interrupt in the interrupt controller; the sequence interrupt must be
enabled with ADCIntEnable(). It is the interrupt handler’s responsibility to clear the interrupt
source via ADCIntClear().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

ADCIntStatus

Gets the current interrupt status.

Prototype:
uint32_t
ADCIntStatus (uint32_t ui32Base,
uint32_t ui32SequenceNum,
bool bMasked)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

bMasked is false if the raw interrupt status is required and true if the masked interrupt status
is required.

Description:
This function returns the interrupt status for the specified sample sequence. Either the raw
interrupt status or the status of interrupts that are allowed to reflect to the processor can be
returned.

Returns:
The current raw or masked interrupt status.

ADCIntStatusEx

Gets interrupt status for the specified ADC module.

34

February 22, 2017

Analog to Digital Converter (ADC)

4.2.2.21

4.2.2.22

Prototype:
uint32_t
ADCIntStatusEx (uint32_t ui32Base,
bool bMasked)

Parameters:
ui32Base is the base address of the ADC module.

bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
Returns the current interrupt status for the specified ADC module. The value returned is the
logical OR of the ADC_INT_x values that are currently active.

ADCIntUnregister

Unregisters the interrupt handler for an ADC interrupt.

Prototype:
void
ADCIntUnregister (uint32_t ui32Base,
uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
This function unregisters the interrupt handler. This function disables the global interrupt in the
interrupt controller; the sequence interrupt must be disabled via ADCIntDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

ADCPhaseDelayGet

Gets the phase delay between a trigger and the start of a sequence.

Prototype:
uint32_t
ADCPhaseDelayGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the ADC module.

February 22, 2017 35

Analog to Digital Converter (ADC)

Description:
This function gets the current phase delay between the detection of an ADC trigger event and
the start of the sample sequence.

Returns:
Returns the phase delay, specified as one of ADC_PHASE_0, ADC_PHASE_22 5,
ADC_PHASE 45, ADC_PHASE_67_5, ADC_PHASE_90, ADC_PHASE_112_5,
ADC_PHASE_135, ADC_PHASE_157_ 5, ADC_PHASE_180, ADC_PHASE_202_5,
ADC _PHASE 225, ADC PHASE 247 5, ADC PHASE 270, ADC PHASE_292 5,
ADC_PHASE 315, or ADC_PHASE_337 5.

4.2.2.23 ADCPhaseDelaySet

Sets the phase delay between a trigger and the start of a sequence.

Prototype:

void
ADCPhaseDelaySet (uint32_t ui32Base,
uint32_t ui32Phase)

Parameters:
ui32Base is the base address of the ADC module.
ui32Phase is the phase delay, specified as one of ADC_PHASE_0, ADC_PHASE_22_5,
ADC_PHASE 45, ADC_PHASE 67 5, ADC_PHASE 90, ADC_PHASE 112 5,
ADC_PHASE_135, ADC_PHASE_157_5, ADC_PHASE_180, ADC_PHASE_202_5,
ADC _PHASE 225, ADC PHASE 247 5, ADC_PHASE 270, ADC PHASE 292 5,
ADC_PHASE 315, or ADC_PHASE 337 5.

Description:

This function sets the phase delay between the detection of an ADC trigger event and the start
of the sample sequence. By selecting a different phase delay for a pair of ADC modules (such
as ADC_PHASE_0 and ADC_PHASE_180) and having each ADC module sample the same
analog input, it is possible to increase the sampling rate of the analog input (with samples N,
N+2, N+4, and so on, coming from the first ADC and samples N+1, N+3, N+5, and so on,
coming from the second ADC). The ADC module has a single phase delay that is applied to all
sample sequences within that module.

Note:
This capability is not available on all parts.

Returns:
None.

4.2.2.24 ADCProcessorTrigger

Causes a processor trigger for a sample sequence.

Prototype:
void
ADCProcessorTrigger (uint32_t ui32Base,
uint32_t ui32SequenceNum)

36 February 22, 2017

Analog to Digital Converter (ADC)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number, with ADC_TRIGGER_WAIT or
ADC_TRIGGER_SIGNAL optionally ORed into it.

Description:
This function triggers a processor-initiated sample sequence if the sample sequence trigger
is configured to ADC_TRIGGER_PROCESSOR. If ADC_TRIGGER_WAIT is ORed into the
sequence number, the processor-initiated trigger is delayed until a later processor-initiated
trigger to a different ADC module that specifies ADC_TRIGGER_SIGNAL, allowing multiple
ADCs to start from a processor-initiated trigger in a synchronous manner.

Returns:
None.

4.2.2.25 ADCReferenceGet

Returns the current setting of the ADC reference.

Prototype:
uint32_t
ADCReferenceGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the ADC module.

Description:
Returns the value of the ADC reference setting. The returned value is one of ADC_REF_INT,
or ADC_REF_EXT_3V.

Note:
The value returned by this function is only meaningful if used on a part that is capable of using
an external reference. Consult the data sheet for your part to determine if it has an external
reference input.

Returns:
The current setting of the ADC reference.

42226 ADCReferenceSet

Selects the ADC reference.

Prototype:
void
ADCReferenceSet (uint32_t ui32Base,
uint32_t ui32Ref)

Parameters:
ui32Base is the base address of the ADC module.

ui32Ref is the reference to use.

February 22, 2017 37

Analog to Digital Converter (ADC)

4.2.2.27

Description:
The ADC reference is set as specified by ui32Ref. It must be one of ADC_REF_INT, or
ADC_REF_EXT_3V for internal or external reference If ADC_REF_INT is chosen, then an
internal 3V reference is used and no external reference is needed. If ADC_REF_EXT_3V is
chosen, then a 3V reference must be supplied to the AVREF pin.

Note:
The ADC reference can only be selected on parts that have an external reference. Consult the
data sheet for your part to determine if there is an external reference.

Returns:
None.

ADCSequenceConfigure

Configures the trigger source and priority of a sample sequence.

Prototype:
void
ADCSequenceConfigure (uint32_t ui32Base,
uint32_t ui32SequenceNum,
uint32_t ui32Trigger,
uint32_t ui32Priority)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
ui32Trigger is the trigger source that initiates the sample sequence; must be one of the
ADC_TRIGGER_x values.
ui32Priority is the relative priority of the sample sequence with respect to the other sample
sequences.

Description:
This function configures the initiation criteria for a sample sequence. Valid sample sequencers
range from zero to three; sequencer zero captures up to eight samples, sequencers one and
two capture up to four samples, and sequencer three captures a single sample. The trigger
condition and priority (with respect to other sample sequencer execution) are set.

The ui82Trigger parameter can take on the following values:

m ADC_TRIGGER_PROCESSOR - A trigger generated by the processor, via the ADCPro-
cessorTrigger() function.

m ADC_TRIGGER_COMPO - A trigger generated by the first analog comparator; configured
with ComparatorConfigure().

m ADC_TRIGGER_COMP1 - A trigger generated by the second analog comparator; config-
ured with ComparatorConfigure().

m ADC_TRIGGER_COMP2 - A trigger generated by the third analog comparator; configured
with ComparatorConfigure().

m ADC_TRIGGER_EXTERNAL - A trigger generated by an input from the Port B4 pin. Note
that some microcontrollers can select from any GPIO using the GPIOADCTriggerEnable()
function.

38

February 22, 2017

Analog to Digital Converter (ADC)

m ADC_TRIGGER_TIMER - A trigger generated by a timer; configured with TimerCon-
trolTrigger().

m ADC_TRIGGER_PWMO - A trigger generated by the first PWM generator; configured with
PWMGenintTrigEnable().

m ADC_TRIGGER_PWM1 - A trigger generated by the second PWM generator; configured
with PWMGenIntTrigEnable().

m ADC_TRIGGER_PWM2 - A trigger generated by the third PWM generator; configured with
PWMGeniIntTrigEnable().

m ADC_TRIGGER_PWMS3 - A trigger generated by the fourth PWM generator; configured
with PWMGeniIntTrigEnable().

m ADC_TRIGGER_ALWAYS - A trigger that is always asserted, causing the sample se-
quence to capture repeatedly (so long as there is not a higher priority source active).

When ADC_TRIGGER_PWMO0, ADC_TRIGGER_PWM1, ADC_TRIGGER_PWM2 or
ADC_TRIGGER_PWMS is specified, one of the following should be ORed into ui32Trigger to
select the PWM module from which the triggers will be routed for this sequence:

m ADC_TRIGGER_PWM_MODO - Selects PWM module 0 as the source of the PWMO to
PWMS triggers for this sequence.

m ADC_TRIGGER_PWM_MOD1 - Selects PWM module 1 as the source of the PWMO to
PWM3 triggers for this sequence.

Note that not all trigger sources are available on all Tiva family members; consult the data
sheet for the device in question to determine the availability of triggers.

The uiB2Priority parameter is a value between 0 and 3, where 0 represents the highest priority
and 3 the lowest. Note that when programming the priority among a set of sample sequences,
each must have unique priority; it is up to the caller to guarantee the uniqueness of the priori-
ties.

Returns:

None.

4.2.2.28 ADCSequenceDataGet

Gets the captured data for a sample sequence.

Prot

otype:

int32_t

ADCSequenceDataGet (uint32_t ui32Base,
uint32_t ui32SequenceNum,
uint32_t *pui32Buffer)

Parameters:

ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
pui32Buffer is the address where the data is stored.

Description:

This function copies data from the specified sample sequencer output FIFO to a memory resi-
dent buffer. The number of samples available in the hardware FIFO are copied into the buffer,
which is assumed to be large enough to hold that many samples. This function only returns

February 22, 2017

39

Analog to Digital Converter (ADC)

the samples that are presently available, which may not be the entire sample sequence if it is
in the process of being executed.

Returns:
Returns the number of samples copied to the buffer.

4.2.2.29 ADCSequenceDisable
Disables a sample sequence.
Prototype:
void
ADCSequenceDisable (uint32_t ui32Base,
uint32_t ui32SequenceNum)
Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
Description:
Prevents the specified sample sequence from being captured when its trigger is detected. A
sample sequence must be disabled before it is configured.
Returns:
None.
4.2.2.30 ADCSequenceDMADisable
Disables DMA for sample sequencers.
Prototype:
void
ADCSequenceDMADisable (uint32_t ui32Base,
uint32_t ui32SequenceNum)
Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
Description:
Prevents the specified sample sequencer from generating DMA requests.
Returns:
None.
4.2.2.31 ADCSequenceDMAEnable
Enables DMA for sample sequencers.
40 February 22, 2017

Analog to Digital Converter (ADC)

4.2.2.32

4.2.2.33

Prototype:
void
ADCSequenceDMAEnable (uint32_t ui32Base,
uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
Allows DMA requests to be generated based on the FIFO level of the sample sequencer.

Returns:
None.

ADCSequenceEnable

Enables a sample sequence.

Prototype:
void
ADCSequenceEnable (uint32_t ui32Base,
uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
Allows the specified sample sequence to be captured when its trigger is detected. A sample
sequence must be configured before it is enabled.

Returns:
None.

ADCSequenceOverflow

Determines if a sample sequence overflow occurred.

Prototype:
int32_t
ADCSequenceOverflow (uint32_t ui32Base,
uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
This function determines if a sample sequence overflow has occurred. Overflow happens if the
captured samples are not read from the FIFO before the next trigger occurs.

February 22, 2017 41

Analog to Digital Converter (ADC)

4.2.2.34

4.2.2.35

Returns:
Returns zero if there was not an overflow, and non-zero if there was.

ADCSequenceOverflowClear

Clears the overflow condition on a sample sequence.

Prototype:
void
ADCSequenceOverflowClear (uint32_t ui32Base,
uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
This function clears an overflow condition on one of the sample sequences. The overflow
condition must be cleared in order to detect a subsequent overflow condition (it otherwise
causes no harm).

Returns:
None.

ADCSequenceStepConfigure

Configure a step of the sample sequencer.

Prototype:
void
ADCSequenceStepConfigure (uint32_t ui32Base,
uint32_t ui32SequenceNum,
uint32_t ui32Step,
uint32_t ui32Configqg)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

ui32Step is the step to be configured.

ui32Config is the configuration of this step; must be a logical OR of ADC_CTL_TS,
ADC_CTL_IE, ADC_CTL_END, ADC_CTL_D, one of the input channel selects
(ADC_CTL_CHO through ADC_CTL_CH23), and one of the digital comparator selects
(ADC_CTL_CMPO through ADC_CTL_CMP?7).

Description:
This function configures the ADC for one step of a sample sequence. The ADC can be
configured for single-ended or differential operation (the ADC_CTL_D bit selects differen-
tial operation when set), the channel to be sampled can be chosen (the ADC_CTL_CHO
through ADC_CTL_CH23 values), and the internal temperature sensor can be selected (the
ADC_CTL_TS bit). Additionally, this step can be defined as the last in the sequence (the

42

February 22, 2017

Analog to Digital Converter (ADC)

4.2.2.36

4.2.2.37

ADC_CTL_END bit) and it can be configured to cause an interrupt when the step is complete
(the ADC_CTL_IE bit). If the digital comparators are present on the device, this step may also
be configured to send the ADC sample to the selected comparator using ADC_CTL_CMPO
through ADC_CTL_CMP7. The configuration is used by the ADC at the appropriate time when
the trigger for this sequence occurs.

Note:
If the Digital Comparator is present and enabled using the ADC_CTL_CMPO through
ADC_CTL_CMP?7 selects, the ADC sample is NOT written into the ADC sequence data FIFO.

The ui32Step parameter determines the order in which the samples are captured by the ADC when
the trigger occurs. It can range from zero to seven for the first sample sequencer, from zero to three
for the second and third sample sequencer, and can only be zero for the fourth sample sequencer.

Differential mode only works with adjacent channel pairs (for example, 0 and 1). The channel select
must be the number of the channel pair to sample (for example, ADC_CTL_CHO for 0 and 1, or
ADC_CTL_CH1 for 2 and 3) or undefined results are returned by the ADC. Additionally, if differential
mode is selected when the temperature sensor is being sampled, undefined results are returned
by the ADC.

It is the responsibility of the caller to ensure that a valid configuration is specified; this function does
not check the validity of the specified configuration.

Returns:
None.

ADCSequenceUnderflow

Determines if a sample sequence underflow occurred.

Prototype:
int32_t
ADCSequenceUnderflow (uint32_t ui32Base,
uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
This function determines if a sample sequence underflow has occurred. Underflow happens if
too many samples are read from the FIFO.

Returns:
Returns zero if there was not an underflow, and non-zero if there was.

ADCSequenceUnderflowClear

Clears the underflow condition on a sample sequence.

February 22, 2017 43

Analog to Digital Converter (ADC)

Prototype:
void
ADCSequenceUnderflowClear (uint32_t ui32Base,
uint32_t ui32SequenceNum)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.

Description:
This function clears an underflow condition on one of the sample sequencers. The underflow
condition must be cleared in order to detect a subsequent underflow condition (it otherwise
causes no harm).

Returns:
None.

4.2.2.38 ADCSoftwareOversampleConfigure
Configures the software oversampling factor of the ADC.
Prototype:
void
ADCSoftwareOversampleConfigure (uint32_t ui32Base,
uint32_t ui32SequenceNum,
uint32_t ui32Factor)
Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
ui32Factor is the number of samples to be averaged.
Description:
This function configures the software oversampling for the ADC, which can be used to provide
better resolution on the sampled data. Oversampling is accomplished by averaging multiple
samples from the same analog input. Three different oversampling rates are supported; 2x,
4x, and 8x.
Oversampling is only supported on the sample sequencers that are more than one sample in
depth (that is, the fourth sample sequencer is not supported). Oversampling by 2x (for exam-
ple) divides the depth of the sample sequencer by two; so 2x oversampling on the first sample
sequencer can only provide four samples per trigger. This also means that 8x oversampling is
only available on the first sample sequencer.
Returns:
None.
4.2.2.39 ADCSoftwareOversampleDataGet
Gets the captured data for a sample sequence using software oversampling.
44 February 22, 2017

Analog to Digital Converter (ADC)

4.2.2.40

Prototype:
void
ADCSoftwareOversampleDataGet (uint32_t ui32Base,
uint32_t ui32SequenceNum,
uint32_t xpui32Buffer,
uint32_t ui32Count)

Parameters:
ui32Base is the base address of the ADC module.

ui32SequenceNum is the sample sequence number.
pui32Buffer is the address where the data is stored.
ui32Count is the number of samples to be read.

Description:
This function copies data from the specified sample sequence output FIFO to a memory resi-
dent buffer with software oversampling applied. The requested number of samples are copied
into the data buffer; if there are not enough samples in the hardware FIFO to satisfy this many
oversampled data items, then incorrect results are returned. It is the caller’s responsibility to
read only the samples that are available and wait until enough data is available, for example as
a result of receiving an interrupt.

Returns:
None.

ADCSoftwareOversampleStepConfigure

Configures a step of the software oversampled sequencer.

Prototype:
void
ADCSoftwareOversampleStepConfigure (uint32_t ui32Base,
uint32_t ui32SequenceNum,
uint32_t ui32Step,
uint32_t ui32Configqg)

Parameters:
ui32Base is the base address of the ADC module.
ui32SequenceNum is the sample sequence number.
ui32Step is the step to be configured.
ui32Config is the configuration of this step.

Description:
This function configures a step of the sample sequencer when using the software oversampling
feature. The number of steps available depends on the oversampling factor set by ADCSoft-
wareOversampleConfigure(). The value of ui32Config is the same as defined for ADCSe-
quenceStepConfigure().

Returns:
None.

February 22, 2017 45

Analog to Digital Converter (ADC)

4.3

Programming Example

The following example shows how to use the ADC API to initialize a sample sequencer for processor
triggering, trigger the sample sequence, and then read back the data when it is ready.

uint32_t ui32Value;

//

// Enable the ADCO module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_ADCO) ;

//

// Wait for the ADCO module to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_ADCO))
{

}

//
// Enable the first sample sequencer to capture the value of channel 0 when
// the processor trigger occurs.
//
ADCSequenceConfigure (ADCO_BASE, 0, ADC_TRIGGER_PROCESSOR, O0);
ADCSequenceStepConfigure (ADCO_BASE, 0, O,

ADC_CTL_IE | ADC_CTL_END | ADC_CTL_CHO);
ADCSequenceEnable (ADCO_BASE, 0);

//

// Trigger the sample sequence.

//

ADCProcessorTrigger (ADCO_BASE, O0);

//

// Wait until the sample sequence has completed.
//

while (!ADCIntStatus (ADCO_BASE, 0, false))

{

}

//

// Read the value from the ADC.

//

ADCSequenceDataGet (ADCO_BASE, 0, &ui32Value);

46

February 22, 2017

AES

5.1

5.2

AES

I OAUCH ON ... e e e e e e e s 47
AP FUNCHIONS .. e e e e 47
Programming EXamIPIe ... e 62
Introduction

The AES module driver provides a method for performing encryption and decryption operations on
blocks of 128-bits of data. The configuration and feature highlights are:

m Supports ECB, CBC, CTR, ICM, CFB, CBC-MAC, GCM, CCM, XTS, F8, and F9 operating
modes.

m The cipher block handles keys of 128-bits, 192-bits, and 256 bits.
m In modes that require authentication, a hash tag is generated.
m Controls uDMA triggers for context and data transfers.

This driver is contained in driverlib/aes.c, with driverlib/aes.h containing the APl dec-
larations for use by applications.

API Functions

Functions

m void AESAuthLengthSet (uint32_t ui32Base, uint32_t ui32Length)
m void AESConfigSet (uint32_t ui32Base, uint32_t ui32Config)

m bool AESDataAuth (uint32_t ui32Base, uint32_t xpui32Src, uint32_t ui32Length, uint32_t
xpui32Tag)

m bool AESDataProcess (uint32_t ui32Base, uint32_t xpui32Src, uint32_t xpui2Dest, uint32_t
ui32Length)

m bool AESDataProcessAuth (uint32_t ui32Base, uint32_t *pui32Src, uint32_t xpui32Dest,
uint32_t ui32Length, uint32_t xpui32AuthSrc, uint32_t ui32AuthLength, uint32_t «puid32Tag)

void AESDataRead (uint32_t ui32Base, uint32_t xpui32Dest)

bool AESDataReadNonBlocking (uint32_t ui32Base, uint32_t xpui32Dest)
void AESDataWrite (uint32_t ui32Base, uint32_t xpui32Src)

bool AESDataWriteNonBlocking (uint32_t ui32Base, uint32_t xpui32Src)
void AESDMADisable (uint32_t ui32Base, uint32_t ui32Flags)

void AESDMAEnable (uint32_t ui32Base, uint32_t ui32Flags)

void AESIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)

void AESIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)

void AESIntEnable (uint32_t ui32Base, uint32_t uid2IntFlags)

void AESIntRegister (uint32_t ui32Base, void (xpfnHandler)(void))
uint32_t AESIntStatus (uint32_t ui32Base, bool bMasked)

February 22, 2017 47

AES

5.2.1

5.2.2

5.2.2.1

5222

void AESIntUnregister (uint32_t ui32Base)

void AESIVRead (uint32_t ui32Base, uint32_t xpui32IVData)

void AESIVSet (uint32_t ui32Base, uint32_t xpui32IVdata)

void AESKey1Set (uint32_t ui32Base, uint32_t «pui32Key, uint32_t ui32Keysize)
void AESKey2Set (uint32_t ui32Base, uint32_t «pui32Key, uint32_t ui32Keysize)
void AESKey3Set (uint32_t ui32Base, uint32_t xpui32Key)

void AESLengthSet (uint32_t ui32Base, uint64_t ui64Length)

void AESReset (uint32_t ui32Base)

void AESTagRead (uint32_t ui32Base, uint32_t «pui32TagData)

Detailed Description

The AES API consists of functions for configuring the AES module and processing data.

Function Documentation

AESAuthLengthSet

Sets the authentication data length in the AES module.

Prototype:
void
AESAuthLengthSet (uint32_t ui32Base,
uint32_t ui32Length)

Parameters:
ui32Base is the base address of the AES module.

ui32Length is the length in bytes.

Description:
This function is only used to write the authentication data length in the combined modes (GCM
or CCM) and XTS mode. Supported AAD lengths for CCM are from 0 to (216 - 28) bytes. For
GCM, any value up to (232 - 1) can be used. For XTS mode, this register is used to load j.
Loading of j is only required if j 1= 0. j represents the sequential number of the 128-bit blocks
inside the data unit. Consequently, j must be multiplied by 16 when passed to this function,
thereby placing the block number in bits [31:4] of the register.

When this function is called, the engine is triggered to start using this context for GCM and
CCM.

Returns:
None

AESConfigSet

Configures the AES module.

48

February 22, 2017

AES

Prototype:
void
AESConfigSet (uint32_t ui32Base,
uint32_t ui32Configqg)

Parameters:
ui32Base is the base address of the AES module.

ui32Config is the configuration of the AES module.

Description:
This function configures the AES module based on the specified parameters. It does not
change any DMA- or interrupt-related parameters.

The ui32Config parameter is a bit-wise OR of a number of configuration flags. The valid flags
are grouped based on their function.

The direction of the operation is specified with only of following flags:

m AES_CFG_DIR_ENCRYPT - Encryption mode
m AES_CFG_DIR_DECRYPT - Decryption mode

The key size is specified with only one of the following flags:

m AES_CFG_KEY_SIZE_128BIT - Key size of 128 bits
m AES_CFG_KEY_SIZE_192BIT - Key size of 192 bits
m AES_CFG_KEY_SIZE_256BIT - Key size of 256 bits

The mode of operation is specified with only one of the following flags.

m AES_CFG_MODE_ECB - Electronic codebook mode
m AES_CFG_MODE_CBC - Cipher-block chaining mode
m AES_CFG_MODE_CFB - Cipher feedback mode

m AES CFG_MODE_CTR - Counter mode

m AES_CFG_MODE_ICM - Integer counter mode

m AES_CFG_MODE_XTS - Ciphertext stealing mode

m AES_CFG_MODE_XTS_TWEAKJL - XEX-based tweaked-codebook mode with cipher-
text stealing with previous/intermediate tweak value and j loaded

m AES_CFG_MODE_XTS_K2IJL - XEX-based tweaked-codebook mode with ciphertext
stealing with key2, i and j loaded

m AES_CFG_MODE_XTS_K2ILJO - XEX-based tweaked-codebook mode with ciphertext
stealing with key2 and i loaded, j=0

m AES_CFG_MODE_F8 - F8 mode
m AES_CFG_MODE_F9 - F9 mode
m AES_CFG_MODE_CBCMAC - Cipher block chaining message authentication code mode

m AES_CFG_MODE_GCM_HLY0ZERO - Galois/counter mode with GHASH with H loaded,
Y0-encrypted forced to zero and counter is not enabled.

m AES_CFG_MODE_GCM_HLYOCALC - Galois/counter mode with GHASH with H loaded,
YO0-encrypted calculated internally and counter is enabled.

m AES_CFG_MODE_GCM_HYOCALC - Galois/Counter mode with autonomous GHASH
(both H and Y0-encrypted calculated internally) and counter is enabled.

m AES_CFG_MODE_CCM - Counter with CBC-MAC mode

February 22, 2017 49

AES

The following defines are used to specify the counter width. It is only required to be defined
when using CTR, CCM, or GCM modes, only one of the following defines must be used to
specify the counter width length:

m AES CFG_CTR_WIDTH_32 - Counter is 32 bits
m AES CFG_CTR_WIDTH_64 - Counter is 64 bits
m AES CFG_CTR_WIDTH_96 - Counter is 96 bits
m AES CFG_CTR_WIDTH_128 - Counter is 128 bits

Only one of the following defines must be used to specify the length field for CCM operations

(L):

m AES CFG_CCM_L_1 -1 byte

m AES_ CFG_CCM_L_2 - 2 bytes
m AES_CFG_CCM_L_3 - 3 bytes
m AES_CFG_CCM_L_4 - 4 bytes
m AES CFG_CCM_L_5 - 5 bytes
m AES_ CFG_CCM_L_6 - 6 bytes
m AES CFG_CCM_L_7 - 7 bytes
m AES CFG_CCM_L_8 - 8 bytes

Only one of the following defines must be used to specify the length of the authentication field
for CCM operations (M) through the ui32Config argument in the AESConfigSet() function:

m AES CFG_CCM_M 4 - 4 bytes
m AES_ CFG_CCM_M 6 - 6 bytes
m AES CFG_CCM_M 8 - 8 bytes
m AES_CFG_CCM_M 10 - 10 bytes
m AES_ CFG_CCM_M 12 - 12 bytes
m AES CFG_CCM_M 14 - 14 bytes
m AES_CFG_CCM_M 16 - 16 bytes

Note:

When performing a basic GHASH operation for used with GCM mode, use the
AES_CFG_MODE_GCM_HLYO0ZERO and do not specify a direction.

Returns:
None.
5.2.2.3 AESDataAuth
Used to authenticate blocks of data by generating a hash tag.
Prototype:
bool
AESDataAuth (uint32_t ui32Base,
uint32_t xpui32Src,
uint32_t ui32Length,
uint32_t *xpui32Tagqg)
50 February 22, 2017

AES

5.2.2.4

5.2.2.5

Parameters:
ui32Base is the base address of the AES module.
pui32Srce is a pointer to the memory location where the input data is stored. The data must
be padded to the 16-byte boundary.
ui32Length is the length of the cryptographic data in bytes.
pui32Tag is a pointer to a 4-word array where the hash tag is written.

Description:
This function processes data to produce a hash tag that can be used tor authentication. Before
calling this function, ensure that the AES module is properly configured the key, data size,
mode, etc. Only CBC-MAC and F9 modes should be used.

Returns:
Returns true if data was processed successfully. Returns false if data processing failed.

AESDataProcess

Used to process(transform) blocks of data, either encrypt or decrypt it.

Prototype:
bool
AESDataProcess (uint32_t ui32Base,
uint32_t xpui32Src,
uint32_t xpui32Dest,
uint32_t ui32Length)

Parameters:
ui32Base is the base address of the AES module.
pui32Srce is a pointer to the memory location where the input data is stored. The data must
be padded to the 16-byte boundary.
pui32Dest is a pointer to the memory location output is written. The space for written data
must be rounded up to the 16-byte boundary.
ui32Length is the length of the cryptographic data in bytes.

Description:
This function iterates the encryption or decryption mechanism number over the data length.
Before calling this function, ensure that the AES module is properly configured the key, data
size, mode, etc. Only ECB, CBC, CTR, ICM, CFB, XTS and F8 operating modes should be
used. The data is processed in 4-word (16-byte) blocks.

Note:
This function only supports values of ui32Length less than 232, because the memory size is
restricted to between 0 to 232 bytes.

Returns:
Returns true if data was processed successfully. Returns false if data processing failed.

AESDataProcessAuth

Processes and authenticates blocks of data, either encrypt it or decrypts it.

February 22, 2017 51

AES

Prototype:

bool

AESDataProcessAuth (uint32_t ui32Base,
uint32_t *pui32Src,
uint32_t xpui32Dest,
uint32_t ui32Length,
uint32_t *pui32AuthSrc,
uint32_t ui32AuthLength,
uint32_t *pui32Taqg)

Parameters:
ui32Base is the base address of the AES module.

pui32Src is a pointer to the memory location where the input data is stored. The data must
be padded to the 16-byte boundary.

pui32Dest is a pointer to the memory location output is written. The space for written data
must be rounded up to the 16-byte boundary.

ui32Length is the length of the cryptographic data in bytes.

pui32AuthSrc is a pointer to the memory location where the additional authentication data is
stored. The data must be padded to the 16-byte boundary.

ui32AuthLength is the length of the additional authentication data in bytes.

pui32Tag is a pointer to a 4-word array where the hash tag is written.

Description:
This function encrypts or decrypts blocks of data in addition to authentication data. A hash
tag is also produced. Before calling this function, ensure that the AES module is properly
configured the key, data size, mode, etc. Only CCM and GCM modes should be used.

Returns:
Returns true if data was processed successfully. Returns false if data processing failed.

5.2.2.6 AESDataRead

Reads plaintext/ciphertext from data registers with blocking.

Prototype:
void
AESDataRead (uint32_t ui32Base,
uint32_t *xpui32Dest)

Parameters:
ui32Base is the base address of the AES module.

pui32Dest is a pointer to an array of words.

Description:
This function reads a block of either plaintext or ciphertext out of the AES module. If the output
is not ready, the function waits until it is ready. A block is 16 bytes or 4 words.

Returns:
None.

52 February 22, 2017

AES

5.2.2.7

5.2.2.8

5.2.2.9

AESDataReadNonBlocking

Reads plaintext/ciphertext from data registers without blocking.

Prototype:
bool
AESDataReadNonBlocking (uint32_t ui32Base,
uint32_t xpui32Dest)

Parameters:
ui32Base is the base address of the AES module.

pui32Dest is a pointer to an array of words of data.

Description:
This function reads a block of either plaintext or ciphertext out of the AES module. If the output
data is not ready, the function returns false. If the read completed successfully, the function
returns true. A block is 16 bytes or 4 words.

Returns:
true or false.

AESDataWrite

Writes plaintext/ciphertext to data registers with blocking.

Prototype:

void
AESDataWrite (uint32_t ui32Base,
uint32_t *xpui32Src)

Parameters:
ui32Base is the base address of the AES module.

pui32Src is a pointer to an array of bytes.

Description:
This function writes a block of either plaintext or ciphertext into the AES module. If the input is
not ready, the function waits until it is ready before performing the write. A block is 16 bytes or
4 words.

Returns:
None.

AESDataWriteNonBlocking

Writes plaintext/ciphertext to data registers without blocking.

Prototype:

bool
AESDataWriteNonBlocking (uint32_t ui32Base,
uint32_t xpui32Src)

February 22, 2017 53

AES

Parameters:
ui32Base is the base address of the AES module.

pui32Src is a pointer to an array of words of data.

Description:
This function writes a block of either plaintext or ciphertext into the AES module. If the input
is not ready, the function returns false. If the write completed successfully, the function returns
true. A block is 16 bytes or 4 words.

Returns:
True or false.

5.2.2.10 AESDMADisable

Disables uDMA requests for the AES module.

Prototype:

void
AESDMADisable (uint32_t ui32Base,
uint32_t ui32Flags)

Parameters:
ui32Base is the base address of the AES module.

ui32Flags is a bit mask of the uDMA requests to be disabled.

Description:
This function disables the uDMA request sources in the AES module. The ui32Flags parameter
is the logical OR of any of the following:

= AES_DMA_DATA IN

= AES_DMA_DATA_ OUT

= AES_DMA_CONTEXT_IN

= AES_DMA_CONTEXT_OUT

Returns:
None.

5.2.2.11 AESDMAEnable

Enables uDMA requests for the AES module.

Prototype:

void
AESDMAEnable (uint32_t ui32Base,
uint32_t ui32Flags)

Parameters:
ui32Base is the base address of the AES module.

ui32Flags is a bit mask of the uDMA requests to be enabled.

54 February 22, 2017

AES

Description:
This function enables the uDMA request sources in the AES module. The ui32Flags parameter
is the logical OR of any of the following:

= AES_DMA_DATA IN

= AES_DMA_DATA_ OUT

= AES_DMA_CONTEXT_IN

= AES_DMA_CONTEXT_OUT

Returns:
None.

5.2.2.12 AESIntClear

Clears AES module interrupts.

Prototype:
void
AESIntClear (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the AES module.

ui32IntFlags is a bit mask of the interrupt sources to disable.

Description:
This function clears the interrupt sources in the AES module. The ui32IntFlags parameter is
the logical OR of any of the following:

m AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt

m AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt
m AES_INT_DMA_DATA_IN - Data input DMA done interrupt

m AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Note:
Only the DMA done interrupts can be cleared. The remaining interrupts should be disabled
with AESIntDisable().

Returns:
None.

5.2.2.13 AESIntDisable

Disables AES module interrupts.

Prototype:
void
AESIntDisable (uint32_t ui32Base,
uint32_t ui32IntFlags)

February 22, 2017 55

AES

5.2.2.14

Parameters:
ui32Base is the base address of the AES module.

ui32intFlags is a bit mask of the interrupt sources to disable.

Description:
This function disables the interrupt sources in the AES module. The ui32IntFlags parameter is
the logical OR of any of the following:

m AES_INT_CONTEXT_IN - Context interrupt

m AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt

m AES_INT_DATA_IN - Data input interrupt

m AES_INT_DATA_OUT - Data output interrupt

m AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt

m AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt
m AES_INT_DMA_DATA_IN - Data input DMA done interrupt

m AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Note:
The DMA done interrupts are the only interrupts that can be cleared. The remaining interrupts
can be disabled instead using AESIntDisable().

Returns:
None.

AESIntEnable

Enables AES module interrupts.

Prototype:
void
AESIntEnable (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the AES module.

ui32IntFlags is a bit mask of the interrupt sources to enable.

Description:
This function enables the interrupts in the AES module. The ui32IntFlags parameter is the
logical OR of any of the following:

m AES_INT_CONTEXT_IN - Context interrupt

m AES_INT_CONTEXT_OUT - Authentication tag (and IV) interrupt

m AES_INT_DATA_IN - Data input interrupt

m AES_INT_DATA_OUT - Data output interrupt

m AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt

m AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt
m AES_INT_DMA_DATA_IN - Data input DMA done interrupt

m AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

56

February 22, 2017

AES

5.2.2.15

5.2.2.16

Note:
Interrupts that have been previously been enabled are not disabled when this function is called.

Returns:
None.

AESIntRegister

Registers an interrupt handler for the AES module.

Prototype:
void
AESIntRegister (uint32_t ui32Base,
void (xpfnHandler) (void))

Parameters:
ui32Base is the base address of the AES module.

pfnHandler is a pointer to the function to be called when the enabled AES interrupts occur.

Description:
This function registers the interrupt handler in the interrupt vector table, and enables AES
interrupts on the interrupt controller; specific AES interrupt sources must be enabled using
AESIntEnable(). The interrupt handler being registered must clear the source of the interrupt
using AESIntClear().

If the application is using a static interrupt vector table stored in flash, then it is not necessary
to register the interrupt handler this way. Instead, IntEnable() is used to enable AES interrupts
on the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

AESIntStatus

Returns the current AES module interrupt status.

Prototype:
uint32_t
AESIntStatus (uint32_t ui32Base,
bool bMasked)

Parameters:
ui32Base is the base address of the AES module.
bMasked is false if the raw interrupt status is required and true if the masked interrupt status
is required.

Returns:
Returns a bit mask of the interrupt sources, which is a logical OR of any of the following:

February 22, 2017 57

AES

m AES_INT_CONTEXT_IN - Context interrupt

m AES_INT_CONTEXT_OUT - Authentication tag (and V) interrupt.

m AES_INT_DATA_IN - Data input interrupt

m AES_INT_DATA_OUT - Data output interrupt

m AES_INT_DMA_CONTEXT_IN - Context DMA done interrupt

m AES_INT_DMA_CONTEXT_OUT - Authentication tag (and IV) DMA done interrupt
m AES_INT_DMA_DATA_IN - Data input DMA done interrupt

m AES_INT_DMA_DATA_OUT - Data output DMA done interrupt

5.2.2.17 void AESIntUnregister (uint32_t ui32Base)

Unregisters an interrupt handler for the AES module.

Parameters:
ui32Base is the base address of the AES module.

Description:
This function unregisters the previously registered interrupt handler and disables the interrupt
in the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

5.2.2.18 AESIVRead

Saves the Initial Vector (IV) registers to a user-defined location.

Prototype:
void
AESIVRead (uint32_t ui32Base,
uint32_t *pui32IVData)

Parameters:
ui32Base is the base address of the AES module.

pui32lVData is pointer to the location that stores the IV data.

Description:
This function stores the IV for use with authenticated encryption and decryption operations. It
is assumed that the AES_CTRL_SAVE_CONTEXT bit is set in the AES_CTRL register.

Returns:
None.

58 February 22, 2017

AES

5.2.2.19

5.2.2.20

5.2.2.21

AESIVSet

Writes the Initial Vector (IV) register, needed in some of the AES Modes.

Prototype:
void
AESIVSet (uint32_t ui32Base,
uint32_t +*pui32IVdata)

Parameters:
ui32Base is the base address of the AES module.

pui32lVdata is an array of 4 words (128 bits), containing the IV value to be configured. The
least significant word is in the Oth index.

Description:
This functions writes the initial vector registers in the AES module.

Returns:
None.

AESKey1Set

Writes the key 1 configuration registers, which are used for encryption or decryption.

Prototype:
void
AESKeylSet (uint32_t ui32Base,
uint32_t *pui32Key,
uint32_t ui32Keysize)

Parameters:
ui32Base is the base address for the AES module.
pui32Key is an array of 32-bit words, containing the key to be configured. The least significant
word in the Oth index.

ui32Keysize is the size of the key, which must be one of the following values:
AES_CFG_KEY_SIZE_128, AES_CFG_KEY_SIZE_192, or AES_CFG_KEY_SIZE_256.

Description:
This function writes key 1 configuration registers based on the key size. This function is used
in all modes.

Returns:
None.

AESKey2Set

Writes the key 2 configuration registers, which are used for encryption or decryption.

Prototype:
void
AESKey2Set (uint32_t ui32Base,

February 22, 2017 59

AES

uint32_t *xpui32Key,
uint32_t ui32Keysize)

Parameters:
ui32Base is the base address for the AES module.
pui32Key is an array of 32-bit words, containing the key to be configured. The least significant
word in the Oth index.
ui32Keysize is the size of the key, which must be one of the following values:
AES_CFG_KEY_SIZE_ 128, AES_CFG_KEY_SIZE_192, or AES_CFG_KEY_SIZE_256.

Description:
This function writes the key 2 configuration registers based on the key size. This function is
used in the F8, F9, XTS, CCM, and CBC-MAC modes.

Returns:
None.
5.2.2.22 AESKey3Set
Writes key 3 configuration registers, which are used for encryption or decryption.
Prototype:
void
AESKey3Set (uint32_t ui32Base,
uint32_t xpui32Key)
Parameters:
ui32Base is the base address for the AES module.
pui32Key is a pointer to an array of 4 words (128 bits), containing the key to be configured.
The least significant word is in the Oth index.
Description:
This function writes the key 2 configuration registers with key 3 data used in CBC-MAC and F8
modes. This key is always 128 bits.
Returns:
None.
5.2.2.23 AESLengthSet
Used to set the write crypto data length in the AES module.
Prototype:
void
AESLengthSet (uint32_t ui32Base,
uint64_t ui64d4Length)
Parameters:
ui32Base is the base address of the AES module.
ui64Length is the crypto data length in bytes.
60 February 22, 2017

AES

Description:
This function stores the cryptographic data length in blocks for all modes. Data lengths up to
(261 - 1) bytes are allowed. For GCM, any value up to (2”36 - 2) bytes are allowed because
a 32-bit block counter is used. For basic modes (ECB/CBC/CTR/ICM/CFB128), zero can be
programmed into the length field, indicating that the length is infinite.

When this function is called, the engine is triggered to start using this context.

Note:
This length does not include the authentication-only data used in some modes. Use the AE-
SAuthLengthSet() function to specify the authentication data length.

Returns:
None

5.2.2.24 AESReset

Resets the AES module.

Prototype:
void
AESReset (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the AES module.

Description:
This function performs a softreset the AES module.

Returns:
None.

5.2.2.25 AESTagRead

Saves the tag registers to a user-defined location.

Prototype:
void
AESTagRead (uint32_t ui32Base,
uint32_t xpui32TagData)

Parameters:
ui32Base is the base address of the AES module.

pui32TagData is pointer to the location that stores the tag data.

Description:
This function stores the tag data for use authenticated encryption and decryption operations.
It is assumed that the AES_CTRL_SAVE_CONTEXT bit is set in the AES_CTRL register.

Returns:
None.

February 22, 2017 61

AES

5.3

Programming Example

The following example sets up the AES module to perform an encryption operation on four blocks of
data in CBC mode with an 128-bit key. This example corresponds to vector F.2.1 in NIST document
SP 800-38A.

//

// Random data for encryption/decryption.

//

uint32_t g_ui32AESPlainText[1l6] =

{
Oxe2becléb, 0x969f402e, 0x117e3de9, 0x2al79373,
0x578a2dae, 0x9cac03le, Oxac6fb79e, 0x518eafds,
0x461cc830, 0Oxl1lled5ca3, 0x19clfbeb5, Oxef520ala,
0x45249ff6, 0x179b4fdf, 0x7b4l2bad, 0x10376ceb

bi

//
// Encryption key
//
uint32_t g_ui32AES128Key[4] =
{
0x16157e2b, Oxa6d2ae28, 0x881l5f7ab, 0x3c4fcf09
i

//
// Initial value for CBC mode.
//
uint32_t g_ui32AESIV[4] =
{
0x03020100, 0x07060504, 0x0b0a0908, 0x0f0e0dOc
bi

int
main (void)
{
uint32_t pui32CipherText[16];

//

// Enable the CCM module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_CCMO) ;

//

// Wait for the CCM module to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_CCMO))
{

}

//

// Reset the AES module before use.
//

AESReset (AES_BASE) ;

//

// Configure the AES module.

//

AESConfigSet (AES_BASE,
AES_CFG_DIR_ENCRYPT |
AES_CFG_MODE_CBC |
AES_CFG_KEY_SIZE_128BIT);

//

62

February 22, 2017

AES

// Set the initial value.
//
AESIVSet (AES_BASE, g_ui32AESIV);

//

// Set the encryption key.

//

AESKeylSet (AES_BASE, g_ui32AES128Key);

//

// Encrypt the data.

//

// The ciphertext should be:

// {Oxacab4976, 0x46b21981, 0x9b8ee9ce, 0x7d19e912,

// 0x9cb8650, 0xeel97250, 0x3alldb95, 0xb2787691,

// 0xb8d6be73, 0x3b74cle3, 0x9%ee6l671, 0x16952222,

// Oxalcafl3f, 0x09aclf68, 0x30calel2, 0Oxa7el8675}

//

AESDataProcess (AES_BASE, g_ui32AESPlainText, pui32CipherText,

64) ;

February 22, 2017

63

AES

64 February 22, 2017

Controller Area Network (CAN)

6.1

6.2

Controller Area Network (CAN)

Mt OTUCH 0N L e 65
AP FUNCHONS . e e e e e 65
CAN MeESSAQGE OIS ...ttt ettt ettt e et et e e e e e e e 88
Programming EXample e 89
Introduction

The Controller Area Network (CAN) APIs provide a set of functions for accessing the Tiva CAN
modules. Functions are provided to configure the CAN controllers, configure message objects, and
manage CAN interrupts.

The Tiva CAN module provides hardware processing of the CAN data link layer. It can be configured
with message filters and preloaded message data so that it can autonomously send and receive
messages on the bus and notify the application accordingly. It automatically handles generation
and checking of CRCs, error processing, and retransmission of CAN messages.

The message objects are stored in the CAN controller and provide the main interface for the CAN
module on the CAN bus. There are 32 message objects that can each be programmed to handle
a separate message ID, or can be chained together for a sequence of frames with the same ID.
The message identifier filters provide masking that can be programmed to match any or all of the
message ID bits, and frame types.

This driver is contained in driverlib/can.c, with driverlib/can.h containing the APl dec-
larations for use by applications.

API Functions

Data Structures

m tCANBItClkParms
m tCANMsgObject

Defines

m CAN_INT_ERROR

m CAN_INT_MASTER

m CAN_INT_STATUS

m CAN_STATUS_BUS_OFF
m CAN_STATUS_EPASS

m CAN_STATUS_EWARN
m CAN_STATUS_LEC_ACK
m CAN_STATUS_LEC_BITO
m CAN_STATUS_LEC_BIT1
m CAN_STATUS_LEC_CRC

February 22, 2017 65

Controller Area Network (CAN)

CAN_STATUS LEC_FORM
CAN_STATUS LEC_MASK
CAN_STATUS LEC_MSK
CAN_STATUS LEC_NONE
CAN_STATUS LEC STUFF
CAN_STATUS_RXOK
CAN_STATUS_TXOK
MSG_OBJ_DATA_LOST
MSG_OBJ_EXTENDED_ID
MSG_OBJ_FIFO
MSG_OBJ_NEW_DATA
MSG_OBJ NO_FLAGS
MSG_OBJ_REMOTE_FRAME
MSG_OBJ_RX_INT_ENABLE
MSG_OBJ STATUS MASK
MSG_OBJ_TX_INT_ENABLE
MSG_OBJ_USE_DIR_FILTER
MSG_OBJ_USE_EXT FILTER
MSG_OBJ_USE_ID_FILTER

Enumerations

tCANIntStsReg
tCANStsReg
tMsgObjType

Functions

uint32_t CANBItRateSet (uint32_t ui32Base, uint32_t ui32SourceClock, uint32_t ui32BitRate)
void CANBItTimingGet (uint32_t ui32Base, tCANBItClkParms xpsClkParms)

void CANBItTimingSet (uint32_t ui32Base, tCANBiItCIkParms xpsClkParms)

void CANDisable (uint32_t ui32Base)

void CANEnable (uint32_t ui32Base)

bool CANErrCntrGet (uint32_t ui32Base, uint32_t xpui32RxCount, uint32_t xpui82TxCount)
void CANInit (uint32_t ui32Base)

void CANIntClear (uint32_t ui32Base, uint32_t ui32IntClr)

void CANIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)

void CANIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)

void CANIntRegister (uint32_t ui32Base, void (xpfnHandler)(void))

uint32_t CANIntStatus (uint32_t ui32Base, tCANIntStsReg elntStsRegq)

void CANIntUnregister (uint32_t ui32Base)

void CANMessageClear (uint32_t ui32Base, uint32_t ui320bjID)

void CANMessageGet (uint32_t ui32Base, uint32_t ui320bjID, tCANMsgObject
xpsMsgObiject, bool bCIrPendingint)

66

February 22, 2017

Controller Area Network (CAN)

6.2.1

m void CANMessageSet (uint32_t ui32Base, uint32_t ui320bjID, tCANMsgObject
xpsMsgObject, tMsgObjType eMsgType)

m bool CANRetryGet (uint32_t ui32Base)

m void CANRetrySet (uint32_t ui32Base, bool bAutoRetry)

m uint32_t CANStatusGet (uint32_t ui32Base, tCANStsReg eStatusReg)

Detailed Description

The CAN APIs provide all of the functions needed by the application to implement an interrupt-
driven CAN stack. These functions may be used to control any of the available CAN ports on a Tiva
microcontroller, and can be used with one port without causing conflicts with the other port.

The CAN module is disabled by default, so the CANInit() function must be called before any other
CAN functions are called. This call initializes the message objects to a safe state prior to enabling
the controller on the CAN bus. Also, the bit timing values must be programmed prior to enabling the
CAN controller. The CANSetBitTiming() function should be called with the appropriate bit timing
values for the CAN bus. Once these two functions have been called, a CAN controller can be
enabled using CANEnable() and later disabled using CANDisable() if needed. Calling CANDisable()
does not reinitialize a CAN controller, so it can be used to temporarily remove a CAN controller from
the bus.

The CAN controller is highly configurable and can be programmed to automatically transmit and
receive CAN messages under certain conditions. Message objects allow the application to perform
some actions automatically without interaction from the microcontroller. Some examples of these
actions are the following:

m Send a data frame immediately

m Send a data frame when a matching remote frame is seen on the CAN bus
m Receive a specific data frame

m Receive data frames that match a certain identifier pattern

To configure message objects to perform any of these actions, the application must first set up one
of the 32 message objects using CANMessageSet(). This function must be used to configure a
message object to send data, or to configure a message object to receive data. Each message
object can be configured to generate interrupts on transmission or reception of CAN messages.

When data is received from the CAN bus, the application can use the CANMessageGet() function to
read the received message. This function can also be used to read a message object that is already
configured in order to populate a message structure prior to making changes to the configuration
of a message object. Reading the message object using this function also clears any pending
interrupt on the message object.

Once a message object has been configured using CANMessageSet(), the message object has
been allocated and continues to perform its programmed function unless it is released by a call
to CANMessageClear(). The application is not required to clear out a message object before set-
ting it with a new configuration, because each time CANMessageSet() is called, it overwrites any
previously programmed configuration.

The 32 message objects are identical except for priority. The lowest numbered message objects
have the highest priority. Priority affects operation in two ways. First, if multiple actions are ready
at the same time, the one with the highest priority message object occurs first. And second, when

February 22, 2017 67

Controller Area Network (CAN)

multiple message objects have interrupts pending, the highest priority is presented first when read-
ing the interrupt status. It is up to the application to manage the 32 message objects as a resource,
and determine the best method for allocating and releasing them.

The CAN controller can generate interrupts on several conditions:

m When any message object transmits a message
m When any message object receives a message

m On warning conditions such as an error counter reaching a limit or occurrence of various bus
errors

m On controller error conditions such as entering the bus-off state

An interrupt handler must be installed in order to process CAN interrupts. If dynamic interrupt
configuration is desired, the CANIntRegister() can be used to register the interrupt handler. This
function places the vector in a RAM-based vector table. However, if the application uses a pre-
loaded vector table in flash, then the CAN controller handler should be entered in the appropriate
slot in the vector table. In this case, CANIntRegister() is not needed, but the interrupt must be
enabled on the host processor master interrupt controller using the IntEnable() function. The CAN
module interrupts are enabled using the CANIntEnable() function. They can be disabled by using
the CANIntDisable() function.

Once CAN interrupts are enabled, the handler is invoked whenever a CAN interrupt is triggered.
The handler can determine which condition caused the interrupt by using the CANIntStatus() func-
tion. Multiple conditions can be pending when an interrupt occurs, so the handler must be designed
to process all pending interrupt conditions before exiting. Each interrupt condition must be cleared
before exiting the handler. There are two ways to do this. The CANIntClear() function clears a
specific interrupt condition without further action required by the handler. However, the handler
can also clear the condition by performing certain actions. If the interrupt is a status interrupt,
the interrupt can be cleared by reading the status register with CANStatusGet(). If the interrupt is
caused by one of the message objects, then it can be cleared by reading the message object using
CANMessageGety().

There are several status registers that can be used to help the application manage the controller.
The status registers are read using the CANStatusGet() function. There is a controller status reg-
ister that provides general status information such as error or warning conditions. There are also
several status registers that provide information about all of the message objects at once using a
32-bit bit map of the status, with one bit representing each message object. These status registers
can be used to determine:

m Which message objects have unprocessed received data
m Which message objects have pending transmission requests
m Which message objects are allocated for use

Bus error conditions when using CAN require special handling by the application, especially in
cases where the CAN controller has gone into a bus-off condition. The CAN specification requires
that a controller that has seen its error counters go above 256 transmit errors removes itself from
the bus and enters a bus-off state. This state is indicated when the CANStatusGet() function returns
the value CAN_STATUS_BUS_OFF. There are other warning levels (CAN_STATUS_EWARN and
CAN_STATUS_EPASS) that occur before a bus-off condition that indicate something is wrong on
the CAN bus. After entering the bus-off condition, the CAN controller automatically disables itself
just as if the application had called CANDisable(). To exit the bus-off condition, the application must
call CANEnable() and then wait for the CAN_STATUS_BUS_OFF condition to clear. If the bus-off
condition does not clear, then there is likely some physical condition or bit timing issue causing the

68

February 22, 2017

Controller Area Network (CAN)

controller to be unable to function properly. There is no way to shorten this sequence as this is the
method for recovering from a bus-off condition specified in the CAN 2.0 specification.

Example:

if (CANStatusGet (CANO_BASE) & CAN_STATUS_BUS_OFF)
{
//
// Enable the controller again to allow it to start decrementing the
// error counter allowing the bus off condition to clear.
//
CANEnable () ;

//

// Wait for the bus off condition to clear. This condition can be

// polled elsewhere depending on the application. But no CAN messages
// can be sent until this condition clears.

//

while (CANStatusGet (CANO_BASE) & CAN_STATUS_BUS_OFF)

{

}

6.2.2 Data Structure Documentation

6.2.2.1 tCANBiItClkParms

Definition:

typedef struct

{
uint32_t ui32SyncPropPhaselSeg;
uint32_t ui32Phase2Seg;
uint32_t ui32SJW;
uint32_t ui32QuantumPrescaler;

}

tCANBitClkParms

Members:
ui32SyncPropPhase1Seg This value holds the sum of the Synchronization, Propagation, and
Phase Buffer 1 segments, measured in time quanta. The valid values for this setting range
from 2 to 16.

ui32Phase2Seg This value holds the Phase Buffer 2 segment in time quanta. The valid values
for this setting range from 1 to 8.

ui32SJW This value holds the Resynchronization Jump Width in time quanta. The valid values
for this setting range from 1 to 4.

ui32QuantumPrescaler This value holds the CAN_CLK divider used to determine time
quanta. The valid values for this setting range from 1 to 1023.

Description:
This structure is used for encapsulating the values associated with setting up the bit timing for a
CAN controller. The structure is used when calling the CANGetBitTiming and CANSetBitTiming
functions.

February 22, 2017 69

Controller Area Network (CAN)

6.2.2.2

6.2.3

6.2.3.1

6.2.3.2

6.2.3.3

tCANMsgObject

Definition:

typedef struct

{
uint32_t ui32MsglD;
uint32_t ui32MsgIDMask;
uint32_t ui32Flags;
uint32_t ui32Msglen;
uint8_t *pui8MsgData;

}

tCANMsgObject

Members:
ui32MsgID The CAN message identifier used for 11 or 29 bit identifiers.

ui32MsglDMask The message identifier mask used when identifier filtering is enabled.
ui32Flags This value holds various status flags and settings specified by tCANObjFlags.
ui32MsglLen This value is the number of bytes of data in the message object.
pui8MsgData This is a pointer to the message object’s data.

Description:
The structure used for encapsulating all the items associated with a CAN message object in
the CAN controller.

Define Documentation

CAN_INT_ERROR

Definition:
#define CAN_INT_ERROR

Description:
This flag is used to allow a CAN controller to generate error interrupts.

CAN_INT_MASTER

Definition:
#define CAN_INT_MASTER

Description:
This flag is used to allow a CAN controller to generate any CAN interrupts. If this is not set,
then no interrupts are generated by the CAN controller.

CAN_INT_STATUS

Definition:
#define CAN_INT_STATUS

70

February 22, 2017

Controller Area Network (CAN)

Description:
This flag is used to allow a CAN controller to generate status interrupts.

6.2.3.4 CAN_STATUS_BUS_OFF

Definition:
#define CAN_STATUS_BUS_OFF

Description:
CAN controller has entered a Bus Off state.

6.2.3.5 CAN_STATUS EPASS

Definition:
#define CAN_STATUS_EPASS

Description:
CAN controller error level has reached error passive level.

6.2.3.6 CAN_STATUS_EWARN

Definition:
#define CAN_STATUS_EWARN

Description:
CAN controller error level has reached warning level.

6.2.3.7 CAN_STATUS_LEC_ACK

Definition:
#define CAN_STATUS_LEC_ACK

Description:
An acknowledge error has occurred.

6.2.3.8 CAN_STATUS_LEC_BITO

Definition:
#define CAN_STATUS_LEC_BITO

Description:
The bus remained a bit level of 0 for longer than is allowed.

February 22, 2017 71

Controller Area Network (CAN)

6.2.3.9

6.2.3.10

6.2.3.11

6.2.3.12

6.2.3.13

6.2.3.14

CAN_STATUS_LEC_BIT1

Definition:
#define CAN_STATUS_LEC_BIT1

Description:

The bus remained a bit level of 1 for longer than is allowed.

CAN_STATUS_LEC_CRC

Definition:
#define CAN_STATUS_LEC_CRC

Description:
A CRC error has occurred.

CAN_STATUS_LEC_FORM

Definition:
#define CAN_STATUS_LEC_FORM

Description:
A formatting error has occurred.

CAN_STATUS_LEC_MASK

Definition:
#define CAN_STATUS_LEC_MASK

Description:

This is the mask for the CAN Last Error Code (LEC).

CAN_STATUS_LEC_MSK

Definition:
#define CAN_STATUS_LEC_MSK

Description:
This is the mask for the last error code field.

CAN_STATUS_LEC_NONE

Definition:
#define CAN_STATUS_LEC_NONE

Description:
There was no error.

72

February 22, 2017

Controller Area Network (CAN)

6.2.3.15

6.2.3.16

6.2.3.17

6.2.3.18

6.2.3.19

6.2.3.20

CAN_STATUS_LEC_STUFF

Definition:
#define CAN_STATUS_LEC_STUFF

Description:
A bit stuffing error has occurred.

CAN_STATUS_RXOK

Definition:
#define CAN_STATUS_RXOK

Description:
A message was received successfully since the last read of this status.

CAN_STATUS_TXOK

Definition:
#define CAN_STATUS_TXOK

Description:
A message was transmitted successfully since the last read of this status.

MSG_OBJ_DATA_LOST

Definition:
#define MSG_OBJ_DATA_LOST

Description:
This indicates that data was lost since this message object was last read.

MSG_OBJ_EXTENDED_ID

Definition:
#define MSG_OBJ_EXTENDED_ID

Description:
This indicates that a message object is using an extended identifier.

MSG_OBJ_FIFO

Definition:
#define MSG_OBJ_FIFO

Description:
This indicates that this message object is part of a FIFO structure and not the final message
object in a FIFO.

February 22, 2017 73

Controller Area Network (CAN)

6.2.3.21 MSG_OBJ_NEW_DATA
Definition:
#define MSG_OBJ_NEW_DATA
Description:
This indicates that new data was available in the message object.
6.2.3.22 MSG_OBJ _NO_FLAGS
Definition:
#define MSG_OBJ_NO_FLAGS
Description:
This indicates that a message object has no flags set.
6.2.3.23 MSG_OBJ_REMOTE_FRAME
Definition:
#define MSG_OBJ_REMOTE_FRAME
Description:
This indicates that a message object is a remote frame.
6.2.3.24 MSG_OBJ RX INT_ENABLE
Definition:
#define MSG_OBJ_RX_INT_ENABLE
Description:
This indicates that receive interrupts are enabled.
6.2.3.25 MSG_OBJ_ STATUS MASK
Definition:
#define MSG_OBJ_STATUS_MASK
Description:
This define is used with the flag values to allow checking only status flags and not configuration
flags.
6.2.3.26 MSG_OBJ_TX INT_ENABLE
Definition:
#define MSG_OBJ_TX_INT_ENABLE
Description:
This indicates that transmit interrupts are enabled.
74 February 22, 2017

Controller Area Network (CAN)

6.2.3.27

6.2.3.28

6.2.3.29

6.2.4

6.2.4.1

6.2.4.2

MSG_OBJ_USE_DIR_FILTER

Definition:
#define MSG_OBJ _USE_DIR_FILTER

Description:
This indicates that a message object uses or is using filtering based on the direction of the
transfer. If the direction filtering is used, then ID filtering must also be enabled.

MSG_OBJ_USE_EXT_FILTER

Definition:
#define MSG_OBJ _USE_EXT_FILTER

Description:
This indicates that a message object uses or is using message identifier filtering based on the
extended identifier. If the extended identifier filtering is used, then ID filtering must also be
enabled.

MSG_OBJ_USE_ID_FILTER

Definition:
#define MSG_OBJ _USE_ID_FILTER

Description:
This indicates that a message object is using filtering based on the object’'s message identifier.

Enumeration Documentation

tCANIntStsReg

Description:
This data type is used to identify the interrupt status register. This is used when calling the
CANIntStatus() function.

Enumerators:
CAN_INT_STS_CAUSE Read the CAN interrupt status information.

CAN_INT_STS_OBJECT Read a message object’s interrupt status.

tCANStsReg

Description:
This data type is used to identify which of several status registers to read when calling the
CANStatusGet() function.

Enumerators:
CAN_STS_CONTROL Read the full CAN controller status.

February 22, 2017 75

Controller Area Network (CAN)

CAN_STS_TXREQUEST Read the full 32-bit mask of message objects with a transmit re-
quest set.

CAN_STS_NEWDAT Read the full 32-bit mask of message objects with new data available.

CAN_STS_MSGVAL Read the full 32-bit mask of message objects that are enabled.

6.2.4.3 tMsgObjType

Description:
This definition is used to determine the type of message object that is set up via a call to the
CANMessageSet() API.

Enumerators:
MSG_OBJ_TYPE_TX Transmit message object.
MSG_OBJ_TYPE_TX_REMOTE Transmit remote request message object.
MSG_OBJ_TYPE_RX Receive message object.
MSG_OBJ_TYPE_RX_REMOTE Receive remote request message object.
MSG_OBJ_TYPE_RXTX_REMOTE Remote frame receive remote, with auto-transmit mes-
sage object.

6.2.5 Function Documentation

6.2.5.1 CANBitRateSet

Sets the CAN bit timing values to a nominal setting based on a desired bit rate.

Prototype:
uint32_t
CANBitRateSet (uint32_t ui32Base,
uint32_t ui32SourceClock,
uint32_t ui32BitRate)

Parameters:
ui32Base is the base address of the CAN controller.
ui32SourceClock is the system clock for the device in Hz.
ui32BitRate is the desired bit rate.

Description:

This function sets the CAN bit timing for the bit rate passed in the ui32BitRate parameter based
on the ui32SourceClock parameter. Because the CAN clock is based off of the system clock,
the calling function must pass in the source clock rate either by retrieving it from SysCtlClock-
Get() or using a specific value in Hz. The CAN bit timing is calculated assuming a minimal
amount of propagation delay, which works for most cases where the network length is short. If
tighter timing requirements or longer network lengths are needed, then the CANBItTimingSet()
function is available for full customization of all of the CAN bit timing values. Because not all
bit rates can be matched exactly, the bit rate is set to the value closest to the desired bit rate
without being higher than the ui32BitRate value.

Note:
On some devices the source clock is fixed at 8MHz so the ui32SourceClock must be set to
8000000.

76 February 22, 2017

Controller Area Network (CAN)

6.2.5.2

6.2.5.3

Returns:
This function returns the bit rate that the CAN controller was configured to use or it returns 0
to indicate that the bit rate was not changed because the requested bit rate was not valid.

CANBItTimingGet

Reads the current settings for the CAN controller bit timing.

Prototype:
void
CANBitTimingGet (uint32_t ui32Base,
tCANBitClkParms *psClkParms)

Parameters:
ui32Base is the base address of the CAN controller.

psClkParms is a pointer to a structure to hold the timing parameters.

Description:
This function reads the current configuration of the CAN controller bit clock timing and stores
the resulting information in the structure supplied by the caller. Refer to CANBItTimingSet() for
the meaning of the values that are returned in the structure pointed to by psClkParms.

Returns:
None.

CANBItTimingSet

Configures the CAN controller bit timing.

Prototype:
void
CANBitTimingSet (uint32_t ui32Base,
tCANBitClkParms xpsClkParms)

Parameters:
ui32Base is the base address of the CAN controller.

psClkParms points to the structure with the clock parameters.

Description:
Configures the various timing parameters for the CAN bus bit timing: Propagation segment,
Phase Buffer 1 segment, Phase Buffer 2 segment, and the Synchronization Jump Width.
The values for Propagation and Phase Buffer 1 segments are derived from the combination
psClkParms->ui32SyncPropPhase1Seg parameter. Phase Buffer 2 is determined from the
psClkParms->ui32Phase2Seg parameter. These two parameters, along with psClkParms-
>uiB2SJW are based in units of bit time quanta. The actual quantum time is determined by
the psClkParms->ui32QuantumPrescaler value, which specifies the divisor for the CAN mod-
ule clock.

The total bit time, in quanta, is the sum of the two Seg parameters, as follows:

bit_time_q = ui32SyncPropPhase1Seg + ui32Phase2Seg + 1

February 22, 2017 77

Controller Area Network (CAN)

Note that the Sync_Seg is always one quantum in duration, and is added to derive the correct
duration of Prop_Seg and Phase1_Seg.

The equation to determine the actual bit rate is as follows:
CAN Clock / ((ui32SyncPropPhase1Seg + uiB32Phase2Seg + 1) * (ui82QuantumPrescaler))

Thus with ui32SyncPropPhase1Seg = 4, uiB32Phase2Seg = 1, uiB2QuantumPrescaler = 2 and
an 8 MHz CAN clock, the bit rate is (8 MHz) / ((5 + 2 + 1) % 2) or 500 Kbit/sec.

Returns:
None.
6.2.5.4 CANDisable
Disables the CAN controller.
Prototype:
void
CANDisable (uint32_t ui32Base)
Parameters:
ui32Base is the base address of the CAN controller to disable.
Description:
Disables the CAN controller for message processing. When disabled, the controller no longer
automatically processes data on the CAN bus. The controller can be restarted by calling CA-
NEnable(). The state of the CAN controller and the message objects in the controller are left
as they were before this call was made.
Returns:
None.
6.2.5.5 CANEnable
Enables the CAN controller.
Prototype:
void
CANEnable (uint32_t ui32Base)
Parameters:
ui32Base is the base address of the CAN controller to enable.
Description:
Enables the CAN controller for message processing. Once enabled, the controller automati-
cally transmits any pending frames, and processes any received frames. The controller can
be stopped by calling CANDisable(). Prior to calling CANEnable(), CANInit() must have been
called to initialize the controller and the CAN bus clock must be configured by calling CANBit-
TimingSet().
Returns:
None.
78 February 22, 2017

Controller Area Network (CAN)

6.2.5.6

6.2.5.7

6.2.5.8

CANErrCntrGet

Reads the CAN controller error counter register.

Prototype:
bool
CANErrCntrGet (uint32_t ui32Base,
uint32_t *pui32RxCount,
uint32_t xpui32TxCount)

Parameters:
ui32Base is the base address of the CAN controller.
pui32RxCount is a pointer to storage for the receive error counter.
pui32TxCount is a pointer to storage for the transmit error counter.

Description:
This function reads the error counter register and returns the transmit and receive error counts
to the caller along with a flag indicating if the controller receive counter has reached the error
passive limit. The values of the receive and transmit error counters are returned through the
pointers provided as parameters.

After this call, xpui32RxCount holds the current receive error count and xpui32TxCount holds
the current transmit error count.

Returns:
Returns true if the receive error count has reached the error passive limit, and false if the error
count is below the error passive limit.

CANInit

Initializes the CAN controller after reset.

Prototype:
void
CANInit (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the CAN controller.

Description:
After reset, the CAN controller is left in the disabled state. However, the memory used for
message objects contains undefined values and must be cleared prior to enabling the CAN
controller the first time. This prevents unwanted transmission or reception of data before the
message objects are configured. This function must be called before enabling the controller
the first time.

Returns:
None.

CANIntClear

Clears a CAN interrupt source.

February 22, 2017 79

Controller Area Network (CAN)

Prototype:
void
CANIntClear (uint32_t ui32Base,
uint32_t ui32IntClr)

Parameters:
ui32Base is the base address of the CAN controller.
ui32IntClr is a value indicating which interrupt source to clear.

Description:
This function can be used to clear a specific interrupt source. The ui32IntClr parameter must
be one of the following values:

m CAN_INT_INTID_STATUS - Clears a status interrupt.
m 1-32 - Clears the specified message object interrupt

It is not necessary to use this function to clear an interrupt. This function is only used if the
application wants to clear an interrupt source without taking the normal interrupt action.

Normally, the status interrupt is cleared by reading the controller status using CANStatusGet().
A specific message object interrupt is normally cleared by reading the message object using
CANMessageGet().

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

6.2.5.9 CANIntDisable

Disables individual CAN controller interrupt sources.

Prototype:
void
CANIntDisable (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the CAN controller.
ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
Disables the specified CAN controller interrupt sources. Only enabled interrupt sources can
cause a processor interrupt.

The ui32IntFlags parameter has the same definition as in the CANIntEnable() function.

Returns:
None.

80 February 22, 2017

Controller Area Network (CAN)

6.2.5.10 CANIntEnable

6.2.5.11

Enables individual CAN controller interrupt sources.

Prototype:

void
CANIntEnable (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:

ui32Base is the base address of the CAN controller.
ui32intFlags is the bit mask of the interrupt sources to be enabled.

Description:

This function enables specific interrupt sources of the CAN controller. Only enabled sources
cause a processor interrupt.

The ui32IntFlags parameter is the logical OR of any of the following:

m CAN_INT_ERROR - a controller error condition has occurred
m CAN_INT_STATUS - a message transfer has completed, or a bus error has been detected
m CAN_INT_MASTER - allow CAN controller to generate interrupts

In order to generate any interrupts, CAN_INT_MASTER must be enabled. Further, for any
particular transaction from a message object to generate an interrupt, that message object
must have interrupts enabled (see CANMessageSet()). CAN_INT_ERROR generates an in-
terrupt if the controller enters the “bus off” condition, or if the error counters reach a limit.
CAN_INT_STATUS generates an interrupt under quite a few status conditions and may pro-
vide more interrupts than the application needs to handle. When an interrupt occurs, use
CANIntStatus() to determine the cause.

Returns:

None.

CANIntRegister

Registers an interrupt handler for the CAN controller.

Prototype:

void
CANIntRegister (uint32_t ui32Base,
void (xpfnHandler) (void))

Parameters:

ui32Base is the base address of the CAN controller.
pfnHandler is a pointer to the function to be called when the enabled CAN interrupts occur.

Description:

This function registers the interrupt handler in the interrupt vector table, and enables CAN
interrupts on the interrupt controller; specific CAN interrupt sources must be enabled using
CANIntEnable(). The interrupt handler being registered must clear the source of the interrupt
using CANIntClear().

February 22, 2017

81

Controller Area Network (CAN)

6.2.5.12

If the application is using a static interrupt vector table stored in flash, then it is not necessary
to register the interrupt handler this way. Instead, IntEnable() is used to enable CAN interrupts
on the interrupt controller.

See also:

IntRegister() for important information about registering interrupt handlers.

Returns:

None.

CANIntStatus

Returns the current CAN controller interrupt status.

Prototype:

uint32_t
CANIntStatus (uint32_t ui32Base,
tCANIntStsReg eIntStsReqg)

Parameters:

ui32Base is the base address of the CAN controller.
elntStsReg indicates which interrupt status register to read

Description:

This function returns the value of one of two interrupt status registers. The interrupt status
register read is determined by the elntStsReg parameter, which can have one of the following
values:

m CAN_INT_STS_CAUSE - indicates the cause of the interrupt
m CAN_INT_STS_OBJECT - indicates pending interrupts of all message objects

CAN_INT_STS_CAUSE returns the value of the controller interrupt register and indicates the
cause of the interrupt. The value returned is CAN_INT_INTID_STATUS if the cause is a status
interrupt. In this case, the status register is read with the CANStatusGet() function. Calling
this function to read the status also clears the status interrupt. If the value of the interrupt
register is in the range 1-32, then this indicates the number of the highest priority message
object that has an interrupt pending. The message object interrupt can be cleared by using the
CANIntClear() function, or by reading the message using CANMessageGet() in the case of a
received message. The interrupt handler can read the interrupt status again to make sure all
pending interrupts are cleared before returning from the interrupt.

CAN_INT_STS_OBJECT returns a bit mask indicating which message objects have pending
interrupts. This value can be used to discover all of the pending interrupts at once, as opposed
to repeatedly reading the interrupt register by using CAN_INT_STS_CAUSE.

Returns:

Returns the value of one of the interrupt status registers.

6.2.5.13 CANIntUnregister

Unregisters an interrupt handler for the CAN controller.

82

February 22, 2017

Controller Area Network (CAN)

6.2.5.14

6.2.5.15

Prototype:
void
CANIntUnregister (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function unregisters the previously registered interrupt handler and disables the interrupt
in the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

CANMessageClear

Clears a message object so that it is no longer used.

Prototype:

void
CANMessageClear (uint32_t ui32Base,
uint32_t ui320bjID)

Parameters:
ui32Base is the base address of the CAN controller.

ui320bjID is the message object number to disable (1-32).

Description:
This function frees the specified message object from use. Once a message object has been
“cleared, ” it no longer automatically sends or receives messages, nor does it generate inter-
rupts.

Returns:
None.

CANMessageGet

Reads a CAN message from one of the message object buffers.

Prototype:
void
CANMessageGet (uint32_t ui32Base,
uint32_t ui320bJjID,
tCANMsgObject *psMsgObject,
bool bClrPendingInt)

Parameters:
ui32Base is the base address of the CAN controller.

February 22, 2017 83

Controller Area Network (CAN)

ui320bjID is the object number to read (1-32).
psMsgObject points to a structure containing message object fields.
bClirPendingint indicates whether an associated interrupt should be cleared.

Description:
This function is used to read the contents of one of the 32 message objects in the CAN con-
troller and return it to the caller. The data returned is stored in the fields of the caller-supplied
structure pointed to by psMsgObject. The data consists of all of the parts of a CAN message,
plus some control and status information.

Normally, this function is used to read a message object that has received and stored a CAN
message with a certain identifier. However, this function could also be used to read the contents
of a message object in order to load the fields of the structure in case only part of the structure
must be changed from a previous setting.

When using CANMessageGet(), all of the same fields of the structure are populated in the
same way as when the CANMessageSet() function is used, with the following exceptions:

psMsgObject->ui32Flags:

m MSG_OBJ_NEW_DATA indicates if this data is new since the last time it was read

m MSG_OBJ_DATA_LOST indicates that at least one message was received on this mes-
sage object and not read by the host before being overwritten.

Returns:
None.

6.2.5.16 CANMessageSet

Configures a message object in the CAN controller.

Prototype:
void
CANMessageSet (uint32_t ui32Base,
uint32_t ui320bjID,
tCANMsgObject *psMsgObject,
tMsgObjType eMsgType)

Parameters:
ui32Base is the base address of the CAN controller.

ui320bjID is the object number to configure (1-32).
psMsgObject is a pointer to a structure containing message object settings.
eMsgType indicates the type of message for this object.

Description:
This function is used to configure any one of the 32 message objects in the CAN controller. A
message object can be configured to be any type of CAN message object as well as to use au-
tomatic transmission and reception. This call also allows the message object to be configured
to generate interrupts on completion of message receipt or transmission. The message object
can also be configured with a filter/mask so that actions are only taken when a message that
meets certain parameters is seen on the CAN bus.

The eMsgType parameter must be one of the following values:

84 February 22, 2017

Controller Area Network (CAN)

MSG_OBJ_TYPE_TX - CAN transmit message object.
MSG_OBJ_TYPE_TX_REMOTE - CAN transmit remote request message object.
MSG_OBJ_TYPE_RX - CAN receive message object.
MSG_OBJ_TYPE_RX_REMOTE - CAN receive remote request message object.

MSG_OBJ_TYPE_RXTX_REMOTE - CAN remote frame receive remote, then transmit
message object.

The message object pointed to by psMsgObject must be populated by the caller, as follows:

m ui32MsgID - contains the message ID, either 11 or 29 bits.
m ui32MsglDMask - mask of bits from ui32MsgID that must match if identifier filtering is

enabled.

ui32Flags
* Set MSG_OBJ_TX_INT_ENABLE flag to enable interrupt on transmission.
+ Set MSG_OBJ_RX_INT_ENABLE flag to enable interrupt on receipt.

+ Set MSG_OBJ_USE_ID_FILTER flag to enable filtering based on the identifier mask
specified by ui32MsgIDMask.
ui32MsgLen - the number of bytes in the message data. This parameter must be non-zero
even for a remote frame; it must match the expected bytes of data in the responding data
frame.

pui8MsgData - points to a buffer containing up to 8 bytes of data for a data frame.

Example: To send a data frame or remote frame (in response to a remote request), take the
following steps:

1.
2.
3.

4.
5.

6.

Set eMsgType to MSG_OBJ_TYPE_TX.
Set psMsgObject->uiB2MsgID to the message ID.

Set psMsgObject->ui32Flags. Make sure to set MSG_OBJ_TX_INT_ENABLE to allow
an interrupt to be generated when the message is sent.

Set psMsgObject->ui32MsgLen to the number of bytes in the data frame.

Set psMsgObject->pui8MsgData to point to an array containing the bytes to send in the
message.

Call this function with ui320bjID set to one of the 32 object buffers.

Example: To receive a specific data frame, take the following steps:

5.
6.

7.

. Set eMsgObjType to MSG_OBJ_TYPE_RX.

Set psMsgObject->ui32MsgID to the full message ID, or a partial mask to use partial ID
matching.

Set psMsgObject->ui32MsglDMask bits that are used for masking during comparison.
Set psMsgObject->ui32Flags as follows:

m Set MSG_OBJ_RX_INT_ENABLE flag to be interrupted when the data frame is re-
ceived.

m Set MSG_OBJ_USE_ID_FILTER flag to enable identifier-based filtering.
Set psMsgObject->ui32MsgLen to the number of bytes in the expected data frame.

The buffer pointed to by psMsgObject->puiB8MsgData is not used by this call as no data is
present at the time of the call.

Call this function with ui320bjID set to one of the 32 object buffers.

If you specify a message object buffer that already contains a message definition, it is overwrit-

ten.

February 22, 2017

85

Controller Area Network (CAN)

Returns:
None.
6.2.5.17 CANRetryGet
Returns the current setting for automatic retransmission.
Prototype:
bool
CANRetryGet (uint32_t ui32Base)
Parameters:
ui32Base is the base address of the CAN controller.
Description:
This function reads the current setting for automatic retransmission in the CAN controller and
returns it to the caller.
Returns:
Returns true if automatic retransmission is enabled, false otherwise.
6.2.5.18 CANRetrySet
Sets the CAN controller automatic retransmission behavior.
Prototype:
void
CANRetrySet (uint32_t ui32Base,
bool bAutoRetry)
Parameters:
ui32Base is the base address of the CAN controller.
bAutoRetry enables automatic retransmission.
Description:
This function enables or disables automatic retransmission of messages with detected errors.
If bAutoRetry is true, then automatic retransmission is enabled, otherwise it is disabled.
Returns:
None.
6.2.5.19 CANStatusGet
Reads one of the controller status registers.
Prototype:
uint32_t
CANStatusGet (uint32_t ui32Base,
tCANStsReg eStatusReq)
86 February 22, 2017

Controller Area Network (CAN)

Parameters:
ui32Base is the base address of the CAN controller.

eStatusReq is the status register to read.

Description:
This function reads a status register of the CAN controller and returns it to the caller. The
different status registers are:

m CAN_STS_ CONTROL - the main controller status

m CAN_STS_TXREQUEST - bit mask of objects pending transmission
m CAN_STS_NEWDAT - bit mask of objects with new data

m CAN_STS_MSGVAL - bit mask of objects with valid configuration

When reading the main controller status register, a pending status interrupt is cleared. This pa-
rameter is used in the interrupt handler for the CAN controller if the cause is a status interrupt.
The controller status register fields are as follows:

m CAN_STATUS BUS_OFF - controller is in bus-off condition

m CAN_STATUS_EWARN - an error counter has reached a limit of at least 96

m CAN_STATUS_EPASS - CAN controller is in the error passive state

m CAN_STATUS_RXOK - a message was received successfully (independent of any mes-
sage filtering).

m CAN_STATUS_TXOK - a message was successfully transmitted

m CAN_STATUS_LEC_MSK - mask of last error code bits (3 bits)

m CAN_STATUS LEC NONE - no error

m CAN_STATUS_LEC_STUFF - stuffing error detected

m CAN_STATUS_LEC_FORM - a format error occurred in the fixed format part of a message

m CAN_STATUS_LEC_ACK - a transmitted message was not acknowledged

m CAN_STATUS_LEC_BIT1 - dominant level detected when trying to send in recessive
mode

m CAN_STATUS_LEC_BITO - recessive level detected when trying to send in dominant
mode

m CAN_STATUS_LEC_CRC - CRC error in received message

The remaining status registers consist of 32-bit-wide bit maps to the message objects. They
can be used to quickly obtain information about the status of all the message objects without
needing to query each one. They contain the following information:

m CAN_STS_TXREQUEST - if a message object's TXRQST bit is set, a transmission is
pending on that object. The application can use this information to determine which objects
are still waiting to send a message.

m CAN_STS_NEWDAT - if a message object’'s NEWDAT bit is set, a new message has been
received in that object, and has not yet been picked up by the host application

m CAN_STS MSGVAL - if a message object's MSGVAL bit is set, the object has a valid
configuration programmed. The host application can use this information to determine
which message objects are empty/unused.

Returns:
Returns the value of the status register.

February 22, 2017 87

Controller Area Network (CAN)

6.3

CAN Message Objects

This section explains how to configure the CAN message objects in various modes using the CAN-
MessageSet() and CANMessageGet() APIs. The configuration of a message object is determined
by two parameters that are passed into the CANMessageSet() API. These are the tCANMsgObject
structure and the tMsgObjType type field. It is important to note that the ulObjlD parameter is the
index of one of the 32 message objects that are available and is not the message object’s identifier.

Message objects can be defined as one of five types based on the needs of the application. They
are defined in the tMsgObjType enumeration and can only be one of those values. The simplest
of the message object types are MSG_OBJ_TYPE_TX and MSG_OBJ_TYPE_RX which are used
to send or receive messages for a given message identifier or a range of identifiers. The mes-
sage type MSG_OBJ_TYPE_TX_ REMOTE is used to transmit a remote request for data from
another CAN node on the network. These message objects do not transmit any data but once
they send the request, they automatically turn into receive message object and wait for data from
a remote CAN device. The message type MSG_OBJ_TYPE_RX_REMOTE is the receiving end
of a remote request, and receives remote requests for data and generates an interrupt to let the
application know when to supply and transmit data back to the CAN controller that issued the re-
mote request for data. The message type MSG_OBJ_TYPE_RXTX_REMOTE is similar to the
MSG_OBJ_TYPE_RX_REMOTE except that it automatically responds with data that the applica-
tion placed in the message object.

The remaining information used to configure a CAN message object is contained in the tCANMs-
gObject structure which is used when calling CANMessageSet() or is filled by data read from the
message object when calling CANMessageGet(). The CAN message identifier is simply stored into
the ulMsgID member of the tCANMsgObiject structure and is the 11- or 20-bit CAN identifier for
this message object. The ulMsgIDMask is the mask that is used in combination with the ulMsgID
value to determine a match when the MSG_OBJ_USE_ID_FILTER flag is set for a message ob-
ject. The ulMsglDMask is ignored if MSG_OBJ_USE_ID_FILTER flag is not set. The last of the
configuration parameters are specified in the ulFlags which are defined as a combination of the
MSG_OBJ_x values. The MSG_OBJ_TX_INT_ENABLE and MSG_OBJ_RX_INT_ENABLE flags
enable transmit complete or receive data interrupts. If the CAN network is only using extended
(20-bit) identifiers, then the MSG_OBJ_EXTENDED_ID flag should be specified. The CANMes-
sageSet() function forces this flag to be set if the length of the identifier is greater than an 11-bit
identifier can hold. The MSG_OBJ_USE_ID_FILTER is used to enable filtering based on the mes-
sage identifiers as message are seen by the CAN controller. The combination of ulMsgID and
ulMsgIDMask determines if a message is accepted for a given message object. In some cases it
may be necessary to add a filter based on the direction of the message, so in these cases, the
MSG_OBJ_USE_DIR_FILTER is used to only accept the direction specified in the message type.
Another additional filter flag is MSG_OBJ_USE_EXT_FILTER which filters on only extended identi-
fiers. In a mixed 11-bit and 20-bit identifier system, this parameter prevents an 11-bit identifier from
being confused with a 20-bit identifier of the same value. It is not necessary to specify this param-
eter if there are only extended identifiers being used in the system. To determine if the incoming
message identifier matches a given message object, the incoming message identifier is ANDed
with ulMsgIDMask and compared with ulMsgID. The "C" logic would be the following:

if ((IncomingID & ulMsgIDMask) == ulMsgID)
{
// Accept the message.
}
else
{
// Ignore the message.

}

88

February 22, 2017

Controller Area Network (CAN)

6.4

The last of the flags to affect CANMessageSet() is the MSG_OBJ_FIFO flag. This flag is used
when combining multiple message objects in a FIFO. This flag is useful when an application must
receive more than the 8 bytes of data that can be received by a single CAN message object. It can
also be used to reduce the likelihood of causing an overrun of data on a single message object that
may be receiving data faster than the application can handle when using a single message object.
If multiple message objects are going to be used in a FIFO, they must be read in sequential order
based on the message object number and have the exact same message identifiers and filtering
values. All but the last of the message objects in a FIFO should have the MSG_OBJ_FIFO flag set
and the last message object in the FIFO should not have the MSG_OBJ_FIFO flag set, indicating
that it is the last entry in the FIFO. See the CAN FIFO configuration example in the Programming
Examples section of this document.

The remaining flags are all used when calling CANMessageGet() when reading data or checking
the status of a message object. If the MSG_OBJ_NEW_DATA flag is set in the tCANMsgObject
ulFlags variable then the data returned was new and not stale data from a previous call to CAN-
MessageGet(). If the MSG_OBJ_DATA_LOST flag is set, then data was lost since this message
object was last read with CANMessageGet(). The MSG_OBJ_REMOTE_FRAME flag is set if the
message object was configured as a remote message object and a remote request was received.

When sending or receiving data, the last two variables define the size and a pointer to the data used
by CANMessageGet() and CANMessageSet(). The ulMsgLen variable in tCANMsgObject specifies
the number of bytes to send when calling CANMessageSet() and the number of bytes to read when
calling CANMessageGet(). The pucMsgData variable in tCANMsgObiject is the pointer to the data
to send ulMsgLen bytes, or the pointer to the buffer to read ulMsgLen bytes into.

Programming Examples

This example code sends out data from CAN controller 0 to be received by CAN controller 1. In
order to actually receive the data, an external cable must be connected between the two ports. In
this example, both controllers are configured for 1 Mbit operation.

tCANBitClkParms CANBitClk;
tCANMsgObject sMsgObjectRx;
tCANMsgObject sMsgObjectTx;
uint8_t pui8BufferIn[8];
uint8_t pui8BufferOut[8];

//

// Enable the CANO module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_CANO) ;

//

// Wait for the CANO module to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_CANO))
{

}

//

// Enable the CAN1 module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_CAN1) ;

//
// Wait for the CANI module to be ready.

February 22, 2017 89

Controller Area Network (CAN)

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_CAN1))
{

}

//

// Reset the state of all the message objects and the state of the CAN
// module to a known state.

//

CANInit (CANO_BASE) ;

CANInit (CAN1_BASE) ;

//

// Configure the controller for 1 Mbit operation.
//

CANSetBitTiming (CAN1_BASE, &CANBitClk);

//

// Take the CANO device out of INIT state.
//

CANEnable (CANO_BASE) ;

CANEnable (CAN1_BASE) ;

//
// Configure a receive object.
//
sMsgObjectRx.ulMsgID = (0x400);

sMsgObjectRx.ulMsgIDMask = 0x7£8;
sMsgObjectRx.ulFlags = MSG_OBJ_USE_ID_FILTER | MSG_OBJ_FIFO;

//

// The first three message objects have the MSG_OBJ_FIFO set to indicate
// that they are part of a FIFO.

//

CANMessageSet (CANO_BASE, 1, &sMsgObjectRx, MSG_OBJ_TYPE_RX) ;
CANMessageSet (CANO_BASE, 2, &sMsgObjectRx, MSG_OBJ_TYPE_RX) ;
CANMessageSet (CANO_BASE, 3, &sMsgObjectRx, MSG_OBJ_TYPE_RX);

//

// Last message object does not have the MSG_OBJ_FIFO set to indicate that
// this is the last message.

//

sMsgObjectRx.ulFlags = MSG_OBJ_USE_ID_FILTER;

CANMessageSet (CANO_BASE, 4, &sMsgObjectRx, MSG_OBJ_TYPE_RX) ;

//

// Configure and start transmit of message object.

//

sMsgObjectTx.ulMsgID = 0x400;

sMsgObjectTx.ulFlags 0;

sMsgObjectTx.ulMsglLen = 8;

sMsgObjectTx.pucMsgbData = pui8BufferOut;

CANMessageSet (CANO_BASE, 2, &sMsgObjectTx, MSG_OBJ_TYPE_TX);

//
// Wait for new data to become available.
//
while ((CANStatusGet (CAN1_BASE, CAN_STS_NEWDAT) & 1) == 0)
{
//
// Read the message out of the message object.
//
CANMessageGet (CAN1_BASE, 1, &sMsgObjectRx, true);
}
//

90

February 22, 2017

Controller Area Network (CAN)

// Process new data in sMsgObjectRx.pucMsgData.
//

This example code configures a set of CAN message objects in FIFO mode using CAN controller
0.

tCANBitClkParms CANBitClk;
tCANMsgObject sMsgObjectRx;
uint8_t pui8BufferIn[8];
uint8_t pui8BufferOut[8];

//

// Enable the CANO module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_CANO) ;

//

// Wait for the CANO module to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_CANO))
{

}

//

// Reset the state of all the message objects and the state of the CAN
// module to a known state.

//

CANInit (CANO_BASE) ;

//

// Configure the controller for 1 Mbit operation.
//

CANBitRateSet (CANO_BASE, 8000000, 1000000);

//

// Take the CANO device out of INIT state.
//

CANEnable (CANO_BASE) ;

//

// Configure a receive object as a CAN FIFO to receive message objects with
// message ID 0x400-0x407.

//

sMsgObjectRx.ulMsgID = (0x400);

sMsgObjectRx.ulMsgIDMask = 0x7£8;

sMsgObjectRx.ulFlags = MSG_OBJ_USE_ID_FILTER | MSG_OBJ_FIFO;

//

// The first three message objects have the MSG_OBJ_FIFO set to indicate
// that they are part of a FIFO.

//

CANMessageSet (CANO_BASE, 1, &sMsgObjectRx, MSG_OBJ_TYPE_RKX);
CANMessageSet (CANO_BASE, 2, &sMsgObjectRx, MSG_OBJ_TYPE_RX) ;
CANMessageSet (CANO_BASE, 3, &sMsgObjectRx, MSG_OBJ_TYPE_RKX) ;

//

// Last message object does not have the MSG_OBJ_FIFO set to indicate that
// this is the last message.

//

sMsgObjectRx.ulFlags = MSG_OBJ_USE_ID_FILTER;

CANMessageSet (CANO_BASE, 4, &sMsgObjectRx, MSG_OBJ_TYPE_RKX);

February 22, 2017 91

Controller Area Network (CAN)

92

February 22, 2017

CRC

7.1

7.2

7.2.1

7.2.2

7.2.2.1

CRC

I OAUCH ON ... e e e e e e e s 93
AP FUNCHIONS .. e e e e 93
Programming EXamIPIe ... e 96
Introduction

The CRC module driver provides a method for generating CRC checksums of various types. The
configuration and feature highlights are:

m Seed value for CRC operations is either all zeroes, all ones or a user defined value.
m Accepts data as bytes or 4-byte words.
m Optionally performs pre- and post-processing on the input data and checksum.

This driver is contained in driverlib/crc.c, with driverlib/crc.h containing the APl dec-
larations for use by applications.

API Functions

Functions

m void CRCConfigSet (uint32_t ui32Base, uint32_t ui32CRCConfig)

m uint32_t CRCDataProcess (uint32_t ui32Base, uint32_t =«pui32Dataln, uint32_t
ui32Datalength, bool bPPResult)

m void CRCDataWrite (uint32_t ui32Base, uint32_t ui32Data)
m uint32_t CRCResultRead (uint32_t ui32Base, bool bPPResult)
m void CRCSeedSet (uint32_t ui32Base, uint32_t ui32Seed)

Detailed Description

The CRC API consists of functions for configuring the CRC module, processing data, and reading
the resultant checksum.

Function Documentation

CRCConfigSet

Set the configuration of CRC functionality with the EC module.

February 22, 2017 93

CRC

Prototype:
void
CRCConfigSet (uint32_t ui32Base,
uint32_t ui32CRCConfig)

Parameters:
ui32Base is the base address of the EC module.

ui32CRCConfig is the configuration of the CRC engine.

Description:
This function configures the operation of the CRC engine within the EC module. The configu-
ration is specified with the ui32CRCConfig argument. It is the logical OR of any of the following
options:

CRC Initialization Value

m CRC_CFG_INIT_SEED - Initialize with seed value
m CRC_CFG_INIT_O - Initialize to all ‘0s’
m CRC_CFG_INIT_1 - Initialize to all ’1s’

Input Data Size

m CRC_CFG_SIZE_8BIT - Input data size of 8 bits
m CRC_CFG_SIZE_32BIT - Input data size of 32 bits

Post Process Reverse/lnverse

m CRC_CFG_RESINV - Result inverse enable
m CRC_CFG_OBR - Output reverse enable

Input Bit Reverse
m CRC_CFG_IBR - Bit reverse enable
Endian Control

m CRC_CFG_ENDIAN_SBHW - Swap byte in half-word
m CRC_CFG_ENDIAN_SHW - Swap half-word

Operation Type

m CRC_CFG_TYPE_P8005 - Polynomial 0x8005

m CRC_CFG_TYPE_P1021 - Polynomial 0x1021

m CRC_CFG_TYPE_P4C11DB7 - Polynomial 0x4C11DB7

m CRC_CFG_TYPE_P1EDC6F41 - Polynomial 0x1EDC6F41
m CRC_CFG_TYPE_TCPCHKSUM - TCP checksum

Returns:
None.

7.2.2.2 CRCDataProcess

Process data to generate a CRC with the EC module.

94 February 22, 2017

CRC

7.2.2.3

Prototype:
uint32_t
CRCDataProcess (uint32_t ui32Base,
uint32_t *pui32Dataln,
uint32_t ui32Datalength,
bool bPPResult)

Parameters:
ui32Base is the base address of the EC module.
pui32Dataln is a pointer to an array of data that is processed.
ui32Datalength is the number of data items that are processed to produce the CRC.
bPPResult is true to read the post-processed result, or false to read the unmodified result.

Description:
This function processes an array of data to produce a CRC result.

The data in the array pointed to be pui32Dataln is either an array of bytes or an array or
words depending on the selection of the input data size options CRC_CFG_SIZE_8BIT and
CRC_CFG_SIZE_32BIT.

This function returns either the unmodified CRC result or the post- processed CRC result from
the EC module. The post-processing options are selectable through CRC_CFG_RESINV and
CRC_CFG_OBR parameters.

Returns:
The CRC result.

CRCDataWrite

Write data into the EC module for CRC operations.

Prototype:

void
CRCDataWrite (uint32_t ui32Base,
uint32_t ui32Data)

Parameters:
ui32Base is the base address of the EC module.

ui32Data is the data to be written.

Description:
This function writes either 8 or 32 bits of data into the EC module for CRC operations.
The distinction between 8 and 32 bits of data is made when the CRC_CFG_SIZE_8BIT or
CRC_CFG_SIZE_32BIT flag is set using the CRCConfigSet() function.

When writing 8 bits of data, ensure the data is in the least significant byte position. The re-
maining bytes should be written with zero. For example, when writing 0xAB, ui32Data should
be 0x000000AB.

Returns:
None

February 22, 2017 95

CRC

7.2.2.4

7.2.2.5

7.3

CRCResultRead

Reads the result of a CRC operation in the EC module.

Prototype:
uint32_t
CRCResultRead (uint32_t ui32Base,
bool bPPResult)

Parameters:
ui32Base is the base address of the EC module.

bPPResult is true to read the post-processed result, or false to read the unmodified result.

Description:
This function reads either the unmodified CRC result or the post processed CRC result from
the EC module. The post-processing options are selectable through CRC_CFG_RESINV and
CRC_CFG_OBR parameters in the CRCConfigSet() function.

Returns:
The CRC result.

CRCSeedSet

Write the seed value for CRC operations in the EC module.

Prototype:

void
CRCSeedSet (uint32_t ui32Base,
uint32_t ui32Seed)

Parameters:
ui32Base is the base address of the EC module.

ui32Seed is the seed value.

Description:
This function writes the seed value for use with CRC operations in the EC module. This value
is the start value for CRC operations. If this value is not written, then the residual seed from
the previous operation is used as the starting value.

Note:
The seed must be written only if CRC_CFG_INIT_SEED is set with the CRCConfigSet() func-
tion.

Programming Example

The following example sets up the CRC for basic CRC32 operation with a starting seed of zero.

uint32_t g_ui32Result;

//

96

February 22, 2017

CRC

// Random data for generating CRC.

//

uint32_t g_ui32RandomData[l6] =

{
0x8a5fl1lb22, 0xcb935d29, Oxcclac092, 0x5dad8c9e,
0x6a83b39f, 0x8607dc60, Oxdalbadd2, 0xf49b0fa2,
Oxaf35d524, 0xffa8001d, Oxbcc931e8, 0x4a2c99%ef,
0x7fa297ab, 0xab943bae, 0x07c6lcc4, 0x47c8627d

bi

int
main (void)
{
//
// Enable the CRC module.
//
SysCtlPeripheralEnable (SYSCTL_PERIPH_CCMO) ;

//

// Wait for the CRC module to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_CCMO))
{

}

//

// Configure the CRC module.

//

CRCConfigSet (EC_BASE,
CRC_CFG_INIT_SEED |
CRC_CFG_TYPE_P4C11DB7 |
CRC_CFG_SIZE_32BIT);

//

// Set the seed value.

//

CRCSeedSet (EC_BASE, O0x5ab5ababa);

//

// Process the data and get the result. The result should be

// 0x75fd6f5c.

//

g_ui32Result = CRCDataProcess (EC_BASE, g_ui32RandomData, 16, false);

February 22, 2017 97

CRC

98

February 22, 2017

DES

8

8.1

8.2

8.2.1

DES

I OAUCH ON ... e e e e e e e s 99
AP FUNCHIONS .. e e e e 99
Programming EXamIPIe e 108
Introduction

The DES module driver provides a method for performing encryption and decryption operations on
blocks of 64-bits of data. The configuration and feature highlights are:

m Supports ECB, CBC, and CFB operating modes.
m Supports DES and TDES(3EDE) operating modes.

This driver is contained in driverlib/des.c, with driverlib/des.h containing the APl dec-
larations for use by applications.

API Functions

Functions

m void DESConfigSet (uint32_t ui32Base, uint32_t ui32Config)

bool DESDataProcess (uint32_t ui32Base, uint32_t xpui32Src, uint32_t xpui32Dest, uint32_t
ui32Length)

void DESDataRead (uint32_t ui32Base, uint32_t xpui32Dest)

bool DESDataReadNonBlocking (uint32_t ui32Base, uint32_t xpui32Dest)
void DESDataWrite (uint32_t ui32Base, uint32_t «pui32Src)

bool DESDataWriteNonBlocking (uint32_t ui32Base, uint32_t xpui32Src)
void DESDMADisable (uint32_t ui32Base, uint32_t ui32Flags)

void DESDMAEnable (uint32_t ui32Base, uint32_t ui32Flags)

void DESIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)

void DESIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)

void DESIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)

void DESIntRegister (uint32_t ui32Base, void (xpfnHandler)(void))
uint32_t DESIntStatus (uint32_t ui32Base, bool bMasked)

void DESIntUnregister (uint32_t ui32Base)

bool DESIVSet (uint32_t ui32Base, uint32_t «pui32IVdata)

void DESKeySet (uint32_t ui32Base, uint32_t xpui32Key)

void DESLengthSet (uint32_t ui32Base, uint32_t ui32Length)

void DESReset (uint32_t ui32Base)

Detailed Description

The DES API consists of functions for configuring the DES module and processing data.

February 22, 2017 99

DES

8.2.2

8.2.2.1

8.2.2.2

Function Documentation

DESConfigSet

Configures the DES module for operation.

Prototype:

void
DESConfigSet (uint32_t ui32Base,
uint32_t ui32Config)

Parameters:

ui32Base is the base address of the DES module.
ui32Config is the configuration of the DES module.

Description:

This function configures the DES module for operation.

The ui32Config parameter is a bit-wise OR of a number of configuration flags. The valid flags
are grouped below based on their function.

The direction of the operation is specified with one of the following two flags. Only one is
permitted.

m DES_CFG_DIR_ENCRYPT - Encryption
m DES_CFG_DIR_DECRYPT - Decryption

The operational mode of the DES engine is specified with one of the following flags. Only one
is permitted.

m DES_CFG_MODE_ECB - Electronic Codebook Mode
m DES_CFG_MODE_CBC - Cipher-Block Chaining Mode
m DES_CFG_MODE_CFB - Cipher Feedback Mode

The selection of single DES or triple DES is specified with one of the following two flags. Only
one is permitted.

= DES_CFG_SINGLE - Single DES
= DES_CFG_TRIPLE - Triple DES

Returns:

None.

DESDataProcess

Processes blocks of data through the DES module.

Prototype:

bool

DESDataProcess (uint32_t ui32Base,
uint32_t xpui32Src,
uint32_t xpui32Dest,
uint32_t ui32Length)

100

February 22, 2017

DES

8.2.2.3

8.2.2.4

Parameters:
ui32Base is the base address of the DES module.

pui32Src is a pointer to an array of words that contains the source data for processing.
pui32Dest is a pointer to an array of words consisting of the processed data.
ui32Length is the length of the cryptographic data in bytes. It must be a multiple of eight.

Description:
This function takes the data contained in the pui32Src array and processes it using the DES
engine. The resulting data is stored in the pui32Dest array. The function blocks until all of the
data has been processed. If processing is successful, the function returns true.

Note:
This functions assumes that the DES module has been configured, and initialization values
and keys have been written.

Returns:
true or false.

DESDataRead

Reads plaintext/ciphertext from data registers with blocking.

Prototype:
void
DESDataRead (uint32_t ui32Base,
uint32_t x*pui32Dest)

Parameters:
ui32Base is the base address of the DES module.

pui32Dest is a pointer to an array of bytes.

Description:
This function waits until the DES module is finished and encrypted or decrypted data is ready.
The output data is then stored in the pui32Dest array.

Returns:
None

DESDataReadNonBlocking

Reads plaintext/ciphertext from data registers without blocking

Prototype:
bool
DESDataReadNonBlocking (uint32_t ui32Base,
uint32_t xpui32Dest)

Parameters:
ui32Base is the base address of the DES module.

pui32Dest is a pointer to an array of 2 words.

February 22, 2017 101

DES

Description:
This function returns true if the data was ready when the function was called. If the data was
not ready, false is returned.

Returns:
True or false.

8.2.2.5 DESDataWrite
Writes plaintext/ciphertext to data registers without blocking
Prototype:
void
DESDataWrite (uint32_t ui32Base,
uint32_t *xpui32Src)
Parameters:
ui32Base is the base address of the DES module.
pui32Srce is a pointer to an array of bytes.
Description:
This function waits until the DES module is ready before writing the data contained in the
pui32Src array.
Returns:
None.
8.2.2.6 DESDataWriteNonBlocking
Writes plaintext/ciphertext to data registers without blocking
Prototype:
bool
DESDataWriteNonBlocking (uint32_t ui32Base,
uint32_t *xpui32Src)
Parameters:
ui32Base is the base address of the DES module.
pui32Src is a pointer to an array of 2 words.
Description:
This function returns false if the DES module is not ready to accept data. It returns true if the
data was written successfully.
Returns:
true or false.
102 February 22, 2017

DES

8.2.2.7 DESDMADisable

Disables DMA request sources in the DES module.

Prototype:

void
DESDMADisable (uint32_t ui32Base,
uint32_t ui32Flags)

Parameters:
ui32Base is the base address of the DES module.

Ui32Flags is a bit mask of the DMA requests to be disabled.

Description:
This function disables DMA request sources in the DES module. The ui32Flags parameter
should be the logical OR of any of the following:

m DES_DMA_CONTEXT_IN - Context In
m DES_DMA_DATA_OUT - Data Out
m DES_DMA_DATA_IN - Data In

Returns:
None.

8.2.2.8 DESDMAEnNable

Enables DMA request sources in the DES module.

Prototype:

void
DESDMAEnable (uint32_t ui32Base,
uint32_t ui32Flags)

Parameters:
ui32Base is the base address of the DES module.

Ui32Flags is a bit mask of the DMA requests to be enabled.

Description:
This function enables DMA request sources in the DES module. The ui32Flags parameter
should be the logical OR of any of the following:

m DES_DMA_CONTEXT_IN - Context In
m DES_DMA_DATA_OUT - Data Out
m DES_DMA_DATA_IN - Data In

Returns:
None.

February 22, 2017 103

DES

8.2.2.9

8.2.2.10

DESIntClear

Clears interrupts in the DES module.

Prototype:
void
DESIntClear (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the DES module.

ui32IntFlags is a bit mask of the interrupts to be disabled.

Description:
This function disables interrupt sources in the DES module. ui32IntFlags should be a logical
OR of one or more of the following values:

m DES_INT_DMA_CONTEXT_IN - Context interrupt
m DES_INT_DMA_DATA_IN - Data input interrupt
m DES_INT_DMA_DATA_OUT - Data output interrupt

Note:
The DMA done interrupts are the only interrupts that can be cleared. The remaining interrupts
can be disabled instead using DESIntDisable().

Returns:
None.

DESIntDisable

Disables interrupts in the DES module.

Prototype:
void
DESIntDisable (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the DES module.

ui32IntFlags is a bit mask of the interrupts to be disabled.

Description:
This function disables interrupt sources in the DES module. ui32IntFlags should be a logical
OR of one or more of the following values:

DES_INT_CONTEXT_IN - Context interrupt
DES_INT_DATA_IN - Data input interrupt
DES_INT_DATA_OUT - Data output interrupt
DES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
DES_INT_DMA_DATA _IN - Data input DMA done interrupt
DES_INT_DMA_DATA_OUT - Data output DMA done interrupt

104

February 22, 2017

DES

8.2.2.11

8.2.2.12

Returns:
None.

DESIntEnable

Enables interrupts in the DES module.

Prototype:
void
DESIntEnable (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the DES module.

ui32IntFlags is a bit mask of the interrupts to be enabled.

Description:
ui32IntFlags should be a logical OR of one or more of the following values:

DES_INT_CONTEXT_IN - Context interrupt
DES_INT_DATA_IN - Data input interrupt
DES_INT_DATA_OUT - Data output interrupt
DES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
DES_INT_DMA_DATA_IN - Data input DMA done interrupt
DES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Returns:
None.

DESIntRegister

Registers an interrupt handler for the DES module.

Prototype:
void
DESIntRegister (uint32_t ui32Base,
void (xpfnHandler) (void))

Parameters:
ui32Base is the base address of the DES module.

pfnHandler is a pointer to the function to be called when the enabled DES interrupts occur.

Description:

This function registers the interrupt handler in the interrupt vector table, and enables DES
interrupts on the interrupt controller; specific DES interrupt sources must be enabled using
DESIntEnable(). The interrupt handler being registered must clear the source of the interrupt

using DESIntClear().

If the application is using a static interrupt vector table stored in flash, then it is not necessary
to register the interrupt handler this way. Instead, IntEnable() should be used to enable DES

interrupts on the interrupt controller.

February 22, 2017

105

DES

8.2.2.13

8.2.2.14

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

DESIntStatus

Returns the current interrupt status of the DES module.

Prototype:
uint32_t
DESIntStatus (uint32_t ui32Base,
bool bMasked)

Parameters:
ui32Base is the base address of the DES module.

bMasked is false if the raw interrupt status is required and true if the masked interrupt status
is required.

Description:
This function gets the current interrupt status of the DES module. The value returned is a
logical OR of the following values:

m DES_INT_CONTEXT_IN - Context interrupt
DES_INT_DATA_IN - Data input interrupt
DES_INT_DATA_OUT_INT - Data output interrupt
DES_INT_DMA_CONTEXT_IN - Context DMA done interrupt
DES_INT_DMA_DATA_IN - Data input DMA done interrupt
DES_INT_DMA_DATA_OUT - Data output DMA done interrupt

Returns:
A bit mask of the current interrupt status.

DESIntUnregister

Unregisters an interrupt handler for the DES module.

Prototype:
void
DESIntUnregister (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the DES module.

Description:
This function unregisters the previously registered interrupt handler and disables the interrupt
in the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

106

February 22, 2017

DES

Returns:
None.

8.2.2.15 DESIVSet

Sets the initialization vector in the DES module.

Prototype:
bool
DESIVSet (uint32_t ui32Base,
uint32_t xpui32IVdata)

Parameters:
ui32Base is the base address of the DES module.

pui32lVdata is a pointer to an array of 64 bits (2 words) of data to be written into the initializa-
tion vectors registers.

Description:
This function sets the initialization vector in the DES module. It returns true if the registers
were successfully written. If the context registers cannot be written at the time the function was
called, then false is returned.

Returns:
True or false.

8.2.2.16 DESKeySet

Sets the key used for DES operations.

Prototype:

void
DESKeySet (uint32_t ui32Base,
uint32_t xpui32Key)

Parameters:
ui32Base is the base address of the DES module.

pui32Key is a pointer to an array that holds the key

Description:
This function sets the key used for DES operations.

pui32Key should be 64 bits long (2 words) if single DES is being used or 192 bits (6 words) if
triple DES is being used.

Returns:
None.

February 22, 2017 107

DES

8.2.2.17 DESLengthSet

Sets the crytographic data length in the DES module.

Prototype:
void
DESLengthSet (uint32_t ui32Base,
uint32_t ui32Length)

Parameters:
ui32Base is the base address of the DES module.

ui32Length is the length of the data in bytes.

Description:
This function writes the cryptographic data length into the DES module. When this register is
written, the engine is triggered to start using this context.

Note:
Data lengths up to (232 - 1) bytes are allowed.

Returns:
None.

8.2.2.18 DESReset

Resets the DES Module.

Prototype:
void
DESReset (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the DES module.

Description:
This function performs a soft-reset sequence of the DES module.

Returns:
None.

8.3 DES Programming Example

The following example sets up the DES module to perform an encryption operation on four blocks
of data in CBC mode with an 64-bit key.

//

// Random data for encryption/decryption.

//

uint32_t g_ui32DESPlainText[16] = {
Oxe2becl6b, 0x969f402e, 0x117e3de9, 0x2al79373,
0x578a2dae, 0x9cac03le, Oxac6fb79e, 0x518eafd5,

108 February 22, 2017

DES

0x461cc830, Oxlled45ca3, 0x19clfbe5, 0Oxef520ala,
0x45249ff6, 0x179b4fdf, O0x7b4l2bad, 0x10376ceb

bi

uint32_t g_ui32DESKey[2] = {
Oxc7£51c87, 0x8076211f
bi

uint32_t g_ui32DESIV[2] = {
Ox6d8ecac4, 0x3b27c885
bi

int
main (void)
{
pui32DESCipherText [16];

//
// Enable the CCM module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_CCMO) ;

//
// Wait for the CCM module to be ready.
//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_CCMO))

{
}

//

// Reset the DES module before use.
//

DESReset (DES_BASE) ;

//

// Configure the DES module.

//

DESConfigSet (DES_BASE,
DES_CFG_DIR_ENCRYPT |
DES_CFG_MODE_CBC |
DES_CFG_SINGLE) ;

//

// Set the key.

//

DESKeySet (DES_BASE, g_ui32DESKey) ;
//

// Write the initial value registers.
//

DESIVSet (DES_BASE, g_ui32DESIV) ;
//

// Perform the encryption.

//

// The ciphertext should be:

// {0x95a74bd5, 0x8595094a, Oxflléebdld,
// 0x4b4e730b, 0x163335ca, 0x8554d039,
// 0x599421e2, 0x5db5db40, 0xl7fclce2,
// 0Oxabdf0d51, O0x6ce768fl, 0x8233fbdb,
//

Ox2aedOa67,
0xb9£f7e301,
0xf048de81,
0x3efe7bae}

DESDataProcess (DES_BASE, g_ui32DESPlainText, g_ui32DESCipherText,

64) ;

February 22, 2017

109

DES

8.4

TDES Programming Example

The following example sets up the TDES module to perform an decryption operation on four blocks

of data in CBC mode with an 192-bit key.

//

// Random data for encryption/decryption.

//

uint32_t g_ui32TDESCipherText[16] = {
0x24c69385, 0xb338beb54, Ox6eeeb276, 0xla952bide,
0x7242cedb, 0x9%ecld7cf, 0x765916ee, 0x3d25e685,
0xfe5865b4, 0xf2238cb8, 0x2a5b68d5, 0x0f79%a4dla,
O0x6fd4a7601, 0x7a57235f, 0Oxce84d08a, 0xla34d0ll

bi

uint32_t g_ui32TDESKey[6] = {
Oxc7f51c87, 0x8076211f, 0x5de5c871, 0xa243cf’e,
0xd25fdb75, 0xad73068f

bi

uint32_t g_ui32TDESIV[2] = {
Ox6d8ecacd, 0x3b27c885
bi

int
main (void)
{
uint32_t pui32TDESCipherText[16];

//

// Enable the CRC module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_CCMO) ;

//

// Wait for the CRC module to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_CCMO))
{

}

//

// Reset the DES module before use.
//

DESReset (DES_BASE) ;

//

// Configure the DES module.

//

DESConfigSet (DES_BASE,
DES_CFG_DIR_ENCRYPT |
DES_CFG_MODE_CBC |
DES_CFG_TRIPLE) ;

//

// Set the key.

//

DESKeySet (DES_BASE, g_ui32TDESKey);

//

// Write the initial value registers.
//

DESIVSet (DES_BASE, g_ui32TDESIV);

110

February 22, 2017

DES

bi

//

// Perform the decryption.

//

// The ciphertext should be:

// {0xe2becl6b, 0x969f402e, 0x1l7e3de9, 0x2al79373,

// 0x578a2dae, 0x9cac03le, Oxac6fb79e, 0x518eafdhs,

// 0x461cc830, Oxlled5ca3, 0x19clfbe5, Oxef520ala,

// 0x45249ff6, 0x179b4fdf, O0x7b4l2bad, 0x10376ceb)

//

DESDataProcess (DES_BASE, g_ui32TDESPlainText, g_ui32TDESCipherText,

64);

February 22, 2017

111

DES

112 February 22, 2017

EEPROM

9

9.1

9.1.1

EEPROM

I OAUCH ON e 113
AP FUNCHONS ..o e et e e e e 114
Programming EXamIPIe e 128
Introduction

The EEPROM API provides a set of functions for interacting with the on-chip EEPROM providing
easy-to-use non-volatile data storage. Functions are provided to program and erase the EEPROM,
configure the EEPROM protection, and handle the EEPROM interrupt.

The EEPROM can be programmed on a word-by-word basis and, unlike flash, the application need
not explicitly erase a word or page before writing a new value to it.

The EEPROM controller has the ability to generate an interrupt when an invalid access is attempted
(such as reading from a protected block). This interrupt can be used to validate the operation of a
program; the interrupt prevents invalid accesses from being silently ignored, hiding potential bugs.
An interrupt can also be generated when an erase or programming operation has completed.

The size of the available EEPROM and the number of blocks it contains varies between different
members of the Tiva family. API functions EEPROMSizeGet() and EEPROMBIlockCountGet() are
provided to allow this information to be determined at runtime.

Data protection is supported at both the device and block levels with configurable passwords used to
control read and write access. Additionally, blocks may be configured to allow access only while the
CPU is running in supervisor mode. A second protection mechanism allows one or more EEPROM
blocks to be made completely inaccessible to software until the next system reset.

This driver is contained in driverlib/eeprom.c, with driverlib/eeprom.h containing the
API declarations for use by applications.

EEPROM Protection

The EEPROM device is organized into a number of blocks each of which may be configured with
various protection options to control an application’s ability to read and/or write data. Additionally,
protection options set on the first block of the device, block 0, affect access to the EEPROM as a
whole, allowing global options to be set on block 0 and individual block protection to be layered on
top of this.

Each block may be configured for two protection states, one which is in effect when the block is
locked and a second which applies when the block is unlocked. Unlocking is performed by writing
a 32- to 96-bit password which has previously been set and committed by the user.

If a password is set on block 0, all other blocks in the device and the registers which control them
are inaccessible until block 0 is unlocked. At this point, the protection set on each individual block
applies with those blocks being individually lockable via their own passwords.

The EEPROM driver allows three specific protection modes to be set on each block. These modes
are defined by the following labels from eeprom. h which define the protection provided if the block
has no password set, if it has a password set and is not unlocked and if it has a password set and
is unlocked. Additionally, EEPROM_PROT_SUPERVISOR_ONLY may be ORed with each of these

February 22, 2017 113

EEPROM

9.1.1.1

9.11.2

9.1.13

9.2

labels when calling EEPROMBIockProtectSet() to prevent all accesses to the block when the CPU
is executing in user mode.

EEPROM_PROT_RW_LRO_URW

If no password is set for the block, this protection level allows both read and write access to the
block data.

If a password is set for the block and the block is locked, this protection level allows only read
access to the block data.

If a password is set for the block and the block is unlocked, this protection level allows both read
and write access to the block data.

EEPROM_PROT_NA_LNA_URW

If no password is set for the block, this protection level prevents the block data from being read or
written.

If a password is set for the block and the block is locked, this protection level prevents the block
data from being read or written.

If a password is set for the block and the block is unlocked, this protection level allows both read
and write access to the block data.

EEPROM_PROT_RO_LNA_URO

If no password is set for the block, this protection level allows only read access to the block data.

If a password is set for the block and the block is locked, this protection level prevents the block
data from being read or written.

If a password is set for the block and the block is unlocked, this protection level allows only read
access to the block data.

API Functions

Defines

EEPROM_INIT_ERROR
EEPROM_INIT_OK
EEPROM_INT_PROGRAM
EEPROM_PROT_NA_LNA_URW
EEPROM_PROT RO _LNA_URO
EEPROM_PROT RW_LRO_URW
EEPROM_PROT_SUPERVISOR_ONLY
EEPROM_RC_NOPERM
EEPROM_RC_WKCOPY

114

February 22, 2017

EEPROM

9.2.1

EEPROM_RC_WKERASE
EEPROM_RC_WORKING
EEPROM_RC_WRBUSY
EEPROMAddrFromBlock(ui32Block)
EEPROMBIlockFromAddr(ui32Addr)

Functions

uint32_t EEPROMBIlockCountGet (void)
void EEPROMBIockHide (uint32_t ui32Block)
uint32_t EEPROMBIockLock (uint32_t ui32Block)

uint32_t EEPROMBIockPasswordSet (uint32_t ui32Block, uint32_t xpui32Password, uint32_t
ui32Count)

m uint32_t EEPROMBIockProtectGet (uint32_t ui32Block)
m uint32_t EEPROMBIockProtectSet (uint32_t ui32Block, uint32_t ui32Protect)

m uint32_t EEPROMBIockUnlock (uint32_t ui32Block, uint32_t sxpui32Password, uint32_t
ui32Count)

uint32_t EEPROMInit (void)

void EEPROMIntClear (uint32_t ui32IntFlags)

void EEPROMIntDisable (uint32_t ui32IntFlags)

void EEPROMIntEnable (uint32_t ui32IntFlags)

uint32_t EEPROMIntStatus (bool bMasked)

uint32_t EEPROMMassErase (void)

uint32_t EEPROMProgram (uint32_t «pui32Data, uint32_t uid2Address, uint32_t ui32Count)
uint32_t EEPROMProgramNonBlocking (uint32_t ui32Data, uint32_t ui32Address)
void EEPROMRead (uint32_t xpui32Data, uint32_t ui32Address, uint32_t ui32Count)
uint32_t EEPROMSizeGet (void)

uint32_t EEPROMStatusGet (void)

Detailed Description

The EEPROM API is broken into four groups of functions: those that deal with reading the EEP-
ROM, those that deal with programming the EEPROM, those that deal with EEPROM protection,
and those that deal with interrupt handling.

EEPROM reading is managed with EEPROMRead().

EEPROM programming is managed with EEPROMMassErase(), EEPROMProgram() and EEP-
ROMProgramNonBlocking().

EEPROM protection is managed with EEPROMBIlockProtectGet(), EEPROMBIlockProtectSet(),
EEPROMBIlockPasswordSet(), EEPROMBIockLock(), EEPROMBIockUnlock() and EEPROMBIock-
Hide().

Interrupt handling is managed with EEPROMIntEnable(), EEPROMIntDisable(), EEPROMIntSta-
tus(), and EEPROMIntClear().

An additional function, EEPROMSizeGet() is provided to allow an application to query the size of
the device storage and the number of blocks it contains.

February 22, 2017 115

EEPROM

9.2.2

9.2.2.1

9.22.2

9.2.2.3

9.224

9.2.25

Define Documentation

EEPROM_INIT_ERROR

Definition:
#define EEPROM_INIT_ERROR

Description:
This value may be returned from a call to EEPROMInit(). It indicates that a previous data or
protection write operation was interrupted by a reset event and that the EEPROM peripheral
was unable to clean up after the problem. This situation may be resolved with another reset or
may be fatal depending upon the cause of the problem. For example, if the voltage to the part
is unstable, retrying once the voltage has stabilized may clear the error.

EEPROM_INIT_OK

Definition:
#define EEPROM_INIT_OK

Description:
This value may be returned from a call to EEPROMInit(). It indicates that no previous write
operations were interrupted by a reset event and that the EEPROM peripheral is ready for use.

EEPROM_INT_PROGRAM

Definition:
#define EEPROM_INT_PROGRAM

Description:
This value may be passed to EEPROMIntEnable() and EEPROMIntDisable() and is returned
by EEPROMIntStatus() if an EEPROM interrupt is currently being signaled.

EEPROM_PROT_NA_LNA_URW

Definition:
#define EEPROM_PROT_NA_LNA_URW

Description:
This value may be passed to EEPROMBIockProtectSet() or returned from EEPROMBIlockPro-
tectGet(). It indicates that the block should offer neither read nor write access unless it is
protected by a password and unlocked.

EEPROM_PROT_RO_LNA_URO

Definition:
#define EEPROM_PROT_RO_LNA_URO

116

February 22, 2017

EEPROM

9.2.2.6

9.22.7

9.2.2.8

9.2.2.9

Description:
This value may be passed to EEPROMBIockProtectSet() or returned from EEPROMBIlockPro-
tectGet(). It indicates that the block should offer read-only access when no password is set or
when a password is set and the block is unlocked. When a password is set and the block is
locked, neither read nor write access is permitted.

EEPROM_PROT_RW_LRO_URW

Definition:
#define EEPROM_PROT_RW_LRO_URW

Description:
This value may be passed to EEPROMBIlockProtectSet() or returned from EEPROMBIockPro-
tectGet(). It indicates that the block should offer read/write access when no password is set or
when a password is set and the block is unlocked, and read-only access when a password is
set but the block is locked.

EEPROM_PROT_SUPERVISOR_ONLY

Definition:
#define EEPROM_PROT_SUPERVISOR_ONLY

Description:
This bit may be ORed with the protection option passed to EEPROMBIockProtectSet() or re-
turned from EEPROMBIockProtectGet(). It restricts EEPROM access to threads running in
supervisor mode and prevents access to an EEPROM block when the CPU is in user mode.

EEPROM_RC_NOPERM

Definition:
#define EEPROM_RC_NOPERM

Description:
This return code bit indicates that an attempt was made to write a value but the destination
permissions disallow write operations. This may be due to the destination block being locked,
access protection set to prohibit writes or an attempt to write a password when one is already
written.

EEPROM_RC_WKCOPY

Definition:
#define EEPROM_RC_WKCOPY

Description:
This return code bit indicates that the EEPROM programming state machine is currently copy-
ing to or from the internal copy buffer to make room for a newly written value. It is provided as
a status indicator and does not indicate an error.

February 22, 2017 117

EEPROM

9.2.2.10

9.2.2.11

9.2.2.12

9.2.2.13

EEPROM_RC_WKERASE

Definition:
#define EEPROM_RC_WKERASE

Description:
This return code bit indicates that the EEPROM programming state machine is currently eras-
ing the internal copy buffer. It is provided as a status indicator and does not indicate an error.

EEPROM_RC_WORKING

Definition:
#define EEPROM_RC_WORKING

Description:
This return code bit indicates that the EEPROM programming state machine is currently work-
ing. No new write operations should be attempted until this bit is clear.

EEPROM_RC_WRBUSY

Definition:
#define EEPROM_RC_WRBUSY

Description:
This return code bit indicates that an attempt was made to read from the EEPROM while a
write operation was in progress.

EEPROMAddrFromBlock

Returns the offset address of the first word in an EEPROM block.

Definition:
#define EEPROMAddrFromBlock (ui32Block)

Parameters:
ui32Block is the index of the EEPROM block whose first word address is to be returned.

Description:
This macro may be used to determine the address of the first word in a given EEPROM block.
The address returned is expressed as a byte offset from the base of EEPROM storage.

Returns:
Returns the address of the first word in the given EEPROM block.

118

February 22, 2017

EEPROM

9.2.2.14 EEPROMBIlockFromAddr

9.2.3

9.2.3.1

9.2.3.2

Returns the EEPROM block number containing a given offset address.

Definition:
#define EEPROMBlockFromAddr (ui32Addr)

Parameters:
ui32Addr is the linear, byte address of the EEPROM location whose block number is to be
returned. This is a zero-based offset from the start of the EEPROM storage.

Description:
This macro may be used to translate an EEPROM address offset into a block number suitable
for use in any of the driver’s block protection functions. The address provided is expressed as
a byte offset from the base of the EEPROM.

Returns:
Returns the zero-based block number which contains the passed address.

Function Documentation

EEPROMBIockCountGet

Determines the number of blocks in the EEPROM.

Prototype:
uint32_t
EEPROMBlockCountGet (void)

Description:
This function may be called to determine the number of blocks in the EEPROM. Each block is
the same size and the number of bytes of storage contained in a block may be determined by
dividing the size of the device, obtained via a call to the EEPROMSizeGet() function, by the
number of blocks returned by this function.

Returns:
Returns the total number of blocks in the device EEPROM.

EEPROMBIlockHide

Hides an EEPROM block until the next reset.

Prototype:
void
EEPROMBlockHide (uint32_t ui32Block)

Parameters:
ui32Block is the EEPROM block number which is to be hidden.

February 22, 2017 119

EEPROM

9.2.3.3

9.2.3.4

Description:
This function hides an EEPROM block other than block 0. Once hidden, a block is completely
inaccessible until the next reset. This mechanism allows initialization code to have access to
data which is to be hidden from the rest of the application. Unlike applications using passwords,
an application making using of block hiding need not contain any embedded passwords which
could be found through disassembly.

Returns:
None.

EEPROMBIockLock

Locks a password-protected EEPROM block.

Prototype:
uint32_t
EEPROMBlockLock (uint32_t ui32Block)

Parameters:
ui32Block is the EEPROM block number which is to be locked.

Description:
This function locks an EEPROM block that has previously been protected by writing a pass-
word. Access to the block once it is locked is determined by the protection settings applied via
a previous call to the EEPROMBIockProtectSet() function. If no password has previously been
set for the block, this function has no effect.

Locking block 0 has the effect of making all other blocks in the EEPROM inaccessible.

Returns:
Returns the lock state for the block on exit, 1 if unlocked (as would be the case if no password
was set) or 0 if locked.

EEPROMBIlockPasswordSet

Sets the password used to protect an EEPROM block.

Prototype:
uint32_t
EEPROMBlockPasswordSet (uint32_t ui32Block,
uint32_t xpui32Password,
uint32_t ui32Count)

Parameters:
ui32Block is the EEPROM block number for which the password is to be set.
pui32Password points to an array of uint32_t values comprising the password to set. Each
element may be any 32-bit value other than OxFFFFFFFF. This array must contain the
number of elements given by the ui32Count parameter.
ui32Count provides the number of uint32_ts in the ui32Password. Valid values are 1, 2 and
3.

120

February 22, 2017

EEPROM

9.2.3.5

9.2.3.6

Description:
This function allows the password used to unlock an EEPROM block to be set. Valid passwords
may be either 32, 64 or 96 bits comprising words with any value other than OxFFFFFFFF. The
password may only be set once. Any further attempts to set the password result in an error.
Once the password is set, the block remains unlocked until EEPROMBIockLock() is called for
that block or block 0, or a reset occurs.

If a password is set on block 0, this affects locking of the peripheral as a whole. When block
0 is locked, all other EEPROM blocks are inaccessible until block 0 is unlocked. Once block 0
is unlocked, other blocks become accessible according to any passwords set on those blocks
and the protection set for that block via a call to EEPROMBIockProtectSet().

Returns:
Returns a logical OR combination of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM,
EEPROM_RC_WKCOPY, EEPROM_RC WKERASE, and EEPROM_RC_WORKING to in-
dicate status and error conditions.

EEPROMBIockProtectGet

Returns the current protection level for an EEPROM block.

Prototype:
uint32_t
EEPROMBlockProtectGet (uint32_t ui32Block)

Parameters:
ui32Block is the block number for which the protection level is to be queried.

Description:
This function returns the current protection settings for a given EEPROM block. If block 0 is
currently locked, it must be unlocked prior to calling this function to query the protection setting
for other blocks.

Returns:
Returns one of EEPROM_PROT_RW_ LRO URW, EEPROM_PROT_NA_LNA URW or EEP-
ROM_PROT_RO_LNA_URO optionally OR-ed with EEPROM_PROT_SUPERVISOR_ONLY.

EEPROMBIockProtectSet

Set the current protection options for an EEPROM block.

Prototype:
uint32_t
EEPROMBlockProtectSet (uint32_t ui32Block,
uint32_t ui32Protect)

Parameters:
ui32Block is the block number for which the protection options are to be set.

ui32Protect consists of one of the values EEPROM_PROT_RW_LRO URW, EEP-
ROM_PROT_NA_LNA_URW or EEPROM_PROT_RO_LNA_URO optionally ORed with
EEPROM_PROT_SUPERVISOR_ONLY.

February 22, 2017 121

EEPROM

Description:

This function sets the protection settings for a given EEPROM block assuming no protection
settings have previously been written. Note that protection settings applied to block 0 have
special meaning and control access to the EEPROM peripheral as a whole. Protection settings
applied to blocks numbered 1 and above are layered above any protection set on block 0 such
that the effective protection on each block is the logical OR of the protection flags set for block
0 and for the target block. This protocol allows global protection options to be set for the whole
device via block 0 and more restrictive protection settings to be set on a block-by-block basis.

The protection flags indicate access permissions as follow:

EEPROM_PROT_SUPERVISOR_ONLY restricts access to the block to threads running in su-
pervisor mode. If clear, both user and supervisor threads can access the block.

EEPROM_PROT_RW_LRO_URW provides read/write access to the block if no password is
set or if a password is set and the block is unlocked. If the block is locked, only read access is
permitted.

EEPROM_PROT_NA_LNA_URW provides neither read nor write access unless a password
is set and the block is unlocked. If the block is unlocked, both read and write access are
permitted.

EEPROM_PROT_RO_LNA_URO provides read access to the block if no password is set or
if a password is set and the block is unlocked. If the block is password protected and locked,
neither read nor write access is permitted.

Returns:
Returns a logical OR combination of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM,
EEPROM_RC_WKCOPY, EEPROM_RC_WKERASE, and EEPROM_RC_WORKING to in-
dicate status and error conditions.

9.2.3.7 EEPROMBIlockUnlock
Unlocks a password-protected EEPROM block.
Prototype:
uint32_t
EEPROMBlockUnlock (uint32_t ui32Block,
uint32_t =*pui32Password,
uint32_t ui32Count)
Parameters:
ui32Block is the EEPROM block number which is to be unlocked.
pui32Password points to an array of uint32_t values containing the password for the block.
Each element must match the password originally set via a call to EEPROMBIlockPass-
wordSet().
ui32Count provides the number of elements in the pui32Password array and must match the
value originally passed to EEPROMBIlockPasswordSet(). Valid values are 1, 2 and 3.
Description:
This function unlocks an EEPROM block that has previously been protected by writing a pass-
word. Access to the block once it is unlocked is determined by the protection settings applied
via a previous call to the EEPROMBIockProtectSet() function.
122 February 22, 2017

EEPROM

To successfully unlock an EEPROM block, the password provided must match the password
provided on the original call to EEPROMBIlockPasswordSet(). If an incorrect password is pro-
vided, the block remains locked.

Unlocking block 0 has the effect of making all other blocks in the device accessible according
to their own access protection settings. When block 0 is locked, all other EEPROM blocks are
inaccessible.

Returns:

Returns the lock state for the block on exit, 1 if unlocked or 0 if locked.

9.2.3.8 EEPROMInit

Performs any necessary recovery in case of power failures during write.

Prototype:

uint32_t
EEPROMInit (void)

Description:

This function must be called after SysCtlPeripheralEnable() and before the EEPROM is ac-
cessed. Itis used to check for errors in the EEPROM state such as from power failure during a
previous write operation. The function detects these errors and performs as much recovery as
possible.

If EEPROM_INIT_ERROR is returned, the EEPROM was unable to recover its state. If power is
stable when this occurs, this indicates a fatal error and is likely an indication that the EEPROM
memory has exceeded its specified lifetime write/erase specification. If the supply voltage is
unstable when this return code is observed, retrying the operation once the voltage is stabilized
may clear the error.

Failure to call this function after a reset may lead to incorrect operation or permanent data loss
if the EEPROM is later written.

Returns:

Returns EEPROM_INIT_OK if no errors were detected or EEPROM_INIT_ERROR if the EEP-
ROM peripheral cannot currently recover from an interrupted write or erase operation.

9.2.3.9 EEPROMIntClear

Clears the EEPROM interrupt.

Prototype:

void
EEPROMIntClear (uint32_t ui32IntFlags)

Parameters:

ui32IntFlags indicates which interrupt sources to clear. Currently, the only valid value is EEP-
ROM_INT_PROGRAM.

Description:

This function allows an application to clear the EEPROM interrupt.

February 22, 2017

123

EEPROM

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

9.2.3.10 EEPROMIntDisable
Disables the EEPROM interrupt.
Prototype:
void
EEPROMIntDisable (uint32_t ui32IntFlags)
Parameters:
ui32IntFlags indicates which EEPROM interrupt source to disable. This must be EEP-
ROM_INT_PROGRAM currently.
Description:
This function disables the EEPROM interrupt and prevents calls to the interrupt vector when
any EEPROM write or erase operation completes. The EEPROM peripheral shares a single
interrupt vector with the flash memory subsystem, INT_FLASH. This function is provided as a
convenience but the EEPROM interrupt can also be disabled using a call to FlashintDisable()
passing FLASH_INT_EEPROM in the ui32IntFlags parameter.
Returns:
None.
9.2.3.11 EEPROMIntEnable
Enables the EEPROM interrupt.
Prototype:
void
EEPROMIntEnable (uint32_t ui32IntFlags)
Parameters:
ui32IntFlags indicates which EEPROM interrupt source to enable. This must be EEP-
ROM_INT_PROGRAM currently.
Description:
This function enables the EEPROM interrupt. When enabled, an interrupt is generated when
any EEPROM write or erase operation completes. The EEPROM peripheral shares a single
interrupt vector with the flash memory subsystem, INT_FLASH. This function is provided as a
convenience but the EEPROM interrupt can also be enabled using a call to FlashintEnable()
passing FLASH_INT_EEPROM in the ui32IntFlags parameter.
124 February 22, 2017

EEPROM

9.2.3.12

9.2.3.13

9.2.3.14

Returns:
None.

EEPROMIntStatus

Reports the state of the EEPROM interrupt.

Prototype:
uint32_t
EEPROMIntStatus (bool bMasked)

Parameters:
bMasked determines whether the masked or unmasked state of the interrupt is to be returned.
If bMasked is true, the masked state is returned, otherwise the unmasked state is returned.

Description:
This function allows an application to query the state of the EEPROM interrupt. If active, the
interrupt may be cleared by calling EEPROMIntClear().

Returns:
Returns EEPROM_INT_PROGRAM if an interrupt is being signaled or 0 otherwise.

EEPROMMassErase

Erases the EEPROM and returns it to the factory default condition.

Prototype:
uint32_t
EEPROMMassErase (void)

Description:
This function completely erases the EEPROM and removes any and all access protection on
its blocks, leaving the device in the factory default condition. After this operation, all EEPROM
words contain the value OxFFFFFFFF and all blocks are accessible for both read and write
operations in all CPU modes. No passwords are active.

The function is synchronous and does not return until the erase operation has completed.

Returns:
Returns 0 on success or non-zero values on failure. Failure codes are logical OR combina-
tions of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEPROM_RC_WKCOPY, EEP-
ROM_RC_WKERASE, and EEPROM_RC_WORKING.

EEPROMProgram

Writes data to the EEPROM.

Prototype:
uint32_t
EEPROMProgram (uint32_t xpui32Data,

February 22, 2017 125

EEPROM

9.2.3.15

9.2.3.16

uint32_t ui32Address,
uint32_t ui32Count)

Parameters:
pui32Data points to the first word of data to write to the EEPROM.
ui32Address defines the byte address within the EEPROM that the data is to be written to.
This value must be a multiple of 4.
ui32Count defines the number of bytes of data that is to be written. This value must be a
multiple of 4.

Description:
This function may be called to write data into the EEPROM at a given word-aligned address.
The call is synchronous and returns only after all data has been written or an error occurs.

Returns:
Returns 0 on success or non-zero values on failure. Failure codes are logical OR combina-
tions of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEPROM_RC_WKCOPY, EEP-
ROM_RC_WKERASE, and EEPROM_RC_WORKING.

EEPROMProgramNonBlocking

Writes a word to the EEPROM.

Prototype:
uint32_t
EEPROMProgramNonBlocking (uint32_t ui32Data,
uint32_t ui32Address)

Parameters:
ui32Data is the word to write to the EEPROM.
ui32Address defines the byte address within the EEPROM to which the data is to be written.
This value must be a multiple of 4.

Description:
This function is intended to allow EEPROM programming under interrupt control. It may be
called to start the process of writing a single word of data into the EEPROM at a given word-
aligned address. The call is asynchronous and returns immediately without waiting for the
write to complete. Completion of the operation is signaled by means of an interrupt from the
EEPROM module. The EEPROM peripheral shares a single interrupt vector with the flash
memory subsystem, INT_FLASH.

Returns:
Returns status and error information in the form of a logical OR combinations
of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEPROM_RC_WKCOPY, EEP-
ROM_RC_WKERASE and EEPROM_RC_WORKING. Flags EEPROM_RC_WKCOPY, EEP-
ROM_RC_WKERASE, and EEPROM_RC_WORKING are expected in normal operation and
do not indicate an error.

EEPROMRead

Reads data from the EEPROM.

126

February 22, 2017

EEPROM

9.2.3.17

9.2.3.18

Prototype:
void
EEPROMRead (uint32_t #*pui32Data,
uint32_t ui32Address,
uint32_t ui32Count)

Parameters:
pui32Data is a pointer to storage for the data read from the EEPROM. This pointer must point
to at least ui32Count bytes of available memory.
ui32Address is the byte address within the EEPROM from which data is to be read. This
value must be a multiple of 4.
ui32Count is the number of bytes of data to read from the EEPROM. This value must be a
multiple of 4.

Description:
This function may be called to read a number of words of data from a word-aligned address
within the EEPROM. Data read is copied into the buffer pointed to by the pui32Data parameter.

Returns:
None.

EEPROMSizeGet

Determines the size of the EEPROM.

Prototype:
uint32_t
EEPROMSizeGet (void)

Description:
This function returns the size of the EEPROM in bytes.

Returns:
Returns the total number of bytes in the EEPROM.

EEPROMStatusGet

Returns status on the last EEPROM program or erase operation.

Prototype:
uint32_t
EEPROMStatusGet (void)

Description:
This function returns the current status of the last program or erase operation performed by
the EEPROM. It is intended to provide error information to applications programming or setting
EEPROM protection options under interrupt control.

Returns:
Returns 0 if the last program or erase operation completed without any errors. |If an
operation is ongoing or an error occurred, the return value is a logical OR combina-
tion of EEPROM_RC_WRBUSY, EEPROM_RC_NOPERM, EEPROM_RC_WKCOPY, EEP-
ROM_RC_WKERASE, and EEPROM_RC_WORKING.

February 22, 2017 127

EEPROM

9.3 Programming Example

The following example shows how to use the EEPROM API to write a block of data and read it back.

uint32_t ui32EEPROMInit;
uint32_t pui32Datal2];
uint32_t pui32Read[2];

//

// Enable the EEPROM module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_EEPROMO) ;

//

// Wait for the EEPROM module to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_EEPROMO))
{

}

//

// Wait for the EEPROM Initialization to complete
//

ui32EEPROMInit = EEPROMInit ();

//
// Check if the EEPROM Initialization returned an error
// and inform the application
//
if (ui32EEPROMInit != EEPROM_INIT_OK)
{
while (1)
{
}

//

// Program some data into the EEPROM at address 0x400.
//

pui32Data[0] = 0x12345678;

pui32Data[l] = 0x56789%abc;

EEPROMProgram (pui32Data, 0x400, sizeof (pui32Data));

//

// Read it back.

//

EEPROMRead (pui32Read, 0x400, sizeof (pui32Read));

128 February 22, 2017

Ethernet Controller

10

10.1

10.2

Ethernet Controller

I OAUCH ON e 129
AP FUNCHONS ..o e et e e e e 129
Programming EXamIPIe e 196
Introduction

The Tiva Ethernet controller consists of a fully integrated media access controller (MAC) and a
network physical (PHY) interface device. The Ethernet controller conforms to IEEE 802.3 speci-
fications and fully supports 10BASE-T and 100BASE-TX standards. Additionally, external PHYs
may be connected via either MIl or RMIl interfaces. Note that this document describes the Ethernet
MAC found in Tiva devices which differs markedly from that found in older LM3S devices. The new
MAC architecture provides very much improved data handling and throughput using a DMA-based
engine in addition to many new hardware features including automatic checksum calculation and
insertion, hardware perfect and hash packet filtering, low power operation with remote wakeup and
wake-on-LAN capability, VLAN tagging and IEEE1588 types 1 and 2 support. As a result, the API
provided has been completely redesigned and cannot be used with older parts.

The Ethernet MAC API provides the set of functions required to implement an interrupt-driven
Ethernet driver for the Tiva Ethernet MAC. Functions are provided to configure and control the MAC,
to access the register set on the PHY, to transmit and receive Ethernet packets using the MAC’s
integrated DMA engine, to control timestamp handling for IEEE1588, to configure and control low
power operation, to configure and control VLAN tagging, and to configure and control the peripheral
interrupts.

This driver is contained in driverlib/emac.c, with driverlib/emac.h containing the API
declarations for use by applications.

API Functions

Data Structures

m tEMACDESS3
m tEMACDMADescriptor
m tEMACWakeUpFramekFilter

Functions

m uint32_t EMACAddrFilterGet (uint32_t ui32Base, uint32_t ui32Index)

m void EMACAddrFilterSet (uint32_t ui32Base, uint32_t ui32Index, uint32_t ui32Config)

m void EMACAddrGet (uint32_t ui32Base, uint32_t uid2Index, uint8_t xpuiBMACAddr)

m void EMACAddrSet (uint32_t ui32Base, uint32_t ui32Index, const uint8_t «pui8MACAddr)

m void EMACConfigGet (uint32_t ui32Base, uint32_t *pui32Config, uint32_t *pui32Mode,
uint32_t xpuiB2RxMaxFrameSize)

February 22, 2017 129

Ethernet Controller

void EMACConfigSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32ModeFlags,
uint32_t ui32RxMaxFrameSize)

uint32_t EMACDMAStateGet (uint32_t ui32Base)

uint32_t EMACFrameFilterGet (uint32_t ui32Base)

void EMACFrameFilterSet (uint32_t ui32Base, uint32_t ui32FilterOpts)

uint32_t EMACHashFilterBitCalculate (uint8_t «xpui8MACAddr)

void EMACHashFilterGet (uint32_t ui32Base, uint32_t xpui82HashHi, uint32_t xpui32HashLo)
void EMACHashFilterSet (uint32_t ui32Base, uint32_t ui32HashHi, uint32_t ui32HashLo)

void EMACInit (uint32_t ui82Base, uint32_t ui32SysClk, uint32_t ui32BusConfig, uint32_t
ui32RxBurst, uint32_t ui32TxBurst, uint32_t ui32DescSkipSize)

void EMACIntClear (uint32_t ui32Base, uint32_t ui32IntFlags)

void EMACIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)
void EMACIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)
void EMACIntRegister (uint32_t ui32Base, void (xpfnHandler)(void))
uint32_t EMACIntStatus (uint32_t ui32Base, bool bMasked)

void EMACIntUnregister (uint32_t ui32Base)

void EMACLPIConfig (uint32_t ui32Base, bool bLPIConfig, uint16_t uit6LPILSTimer, uint16_t
ui16LPITWTimer)

void EMACLPIEnter (uint32_t ui32Base)

void EMACLPILinkClear (uint32_t ui32Base)

void EMACLPILinkSet (uint32_t ui32Base)

uint16_t EMACLPIStatus (uint32_t ui32Base)

uint32_t EMACNumAddrGet (uint32_t ui32Base)

void EMACPHY ConfigSet (uint32_t ui32Base, uint32_t ui32Config)

uint16_t EMACPHYExtendedRead (uint32_t ui32Base, uint8_t ui8PhyAddr, uint16_t
ui16RegAddr)

void EMACPHYExtendedWrite (uint32_t ui32Base, uint8_t ui8PhyAddr, uint16_t ui16RegAddr,
uint16_t uit6Value)

uinti6_t EMACPHYMMDRead (uint32_t ui32Base, uint8_t ui8PhyAddr, uint16_t
ui16RegAddr)

void EMACPHYMMDWrite (uint32_t ui32Base, uint8_t ui8PhyAddr, uint16_t ui16RegAddr,
uint16_t uit6Data)

void EMACPHYPowerOff (uint32_t ui32Base, uint8_t ui8PhyAddr)
void EMACPHYPowerOn (uint32_t ui32Base, uint8_t ui8PhyAddr)
uint16_t EMACPHYRead (uint32_t ui32Base, uint8_t ui8PhyAddr, uint8_t uiSRegAddr)

void EMACPHYWrite (uint32_t ui32Base, uint8_t ui8PhyAddr, uint8_t ui8RegAddr, uint16_t
uii6Data)

uint32_t EMACPowerManagementControlGet (uint32_t ui32Base)

void EMACPowerManagementControlSet (uint32_t ui32Base, uint32_t ui32Flags)

uint32_t EMACPowerManagementStatusGet (uint32_t ui32Base)

void EMACRemoteWakeUpFrameFilterGet (uint32_t ui32Base, tEMACWakeUpFrameFilter
xpFilter)

void EMACRemoteWakeUpFrameFilterSet (uint32_t ui32Base, const tEMACWakeUpFrame-
Filter xpFilter)

m void EMACReset (uint32_t ui32Base)
m void EMACRxDisable (uint32_t ui32Base)
m uint8_t x EMACRXxDMACurrentBufferGet (uint32_t ui32Base)

130

February 22, 2017

Ethernet Controller

tEMACDMADescriptor * EMACRxDMACurrentDescriptorGet (uint32_t ui32Base)
tEMACDMADescriptor * EMACRxDMADescriptorListGet (uint32_t ui32Base)

void EMACRxDMADescriptorListSet (uint32_t ui32Base, tEMACDMADescriptor xpDescriptor)
void EMACRxDMAPollIDemand (uint32_t ui32Base)

void EMACRxEnable (uint32_t ui32Base)

void EMACRxWatchdogTimerSet (uint32_t ui32Base, uint8_t ui8Timeout)

uint32_t EMACStatusGet (uint32_t ui32Base)

void EMACTimestampAddendSet (uint32_t ui32Base, uint32_t ui32Increment)

uint32_t EMACTimestampConfigGet (uint32_t ui32Base, uint32_t «pui32SubSecondInc)

void EMACTimestampConfigSet (uint32_t wui32Base, uint32_t ui32Config, uint32_t
ui32SubSecondinc)

void EMACTimestampDisable (uint32_t ui32Base)

void EMACTimestampEnable (uint32_t ui32Base)

uint32_t EMACTimestamplntStatus (uint32_t ui32Base)

void EMACTimestampPPSCommand (uint32_t ui32Base, uint8_t ui8Cmd)

void EMACTimestampPPSCommandModeSet (uint32_t ui32Base, uint32_t ui32Config)

void EMACTimestampPPSPeriodSet (uint32_t ui32Base, uint32_t ui32Period, uint32_t
ui32Width)

m void EMACTimestampPPSSimpleModeSet (uint32_t ui32Base, uint32_t ui32FreqConfig)
m void EMACTimestampSysTimeGet (uint32_t ui32Base, uint32_t *pui32Seconds, uint32_t

xpui32SubSeconds)

void EMACTimestampSysTimeSet (uint32_t ui32Base, uint32_t ui32Seconds, uint32_t
ui32SubSeconds)

void EMACTimestampSysTimeUpdate (uint32_t ui32Base, uint32_t ui32Seconds, uint32_t
ui32SubSeconds, bool binc)

m void EMACTimestampTargetintDisable (uint32_t ui32Base)
m void EMACTimestampTargetintEnable (uint32_t ui32Base)
m void EMACTimestampTargetSet (uint32_t ui32Base, uint32_t ui32Seconds, uint32_t

ui32SubSeconds)

void EMACTxDisable (uint32_t ui32Base)

uint8_t «x EMACTxDMACurrentBufferGet (uint32_t ui32Base)

tEMACDMADescriptor * EMACTxDMACurrentDescriptorGet (uint32_t ui32Base)
tEMACDMADescriptor x EMACTxDMADescriptorListGet (uint32_t ui32Base)

void EMACTxDMADescriptorListSet (uint32_t ui32Base, tEMACDMADescriptor «pDescriptor)
void EMACTxDMAPollIDemand (uint32_t ui32Base)

void EMACTxEnable (uint32_t ui32Base)

void EMACTxFlush (uint32_t ui32Base)

uint32_t EMACVLANHashFilterBitCalculate (uint16_t uii6Tag)

uint32_t EMACVLANHashFilterGet (uint32_t ui32Base)

void EMACVLANHashFilterSet (uint32_t ui32Base, uint32_t ui32Hash)

uint32_t EMACVLANRXxConfigGet (uint32_t ui32Base, uint16_t xpui1l6Tag)

void EMACVLANRXxConfigSet (uint32_t ui32Base, uint16_t ui16Tag, uint32_t ui32Config)
uint32_t EMACVLANTxConfigGet (uint32_t ui32Base, uint16_t xpui16Tag)

void EMACVLANTxConfigSet (uint32_t ui32Base, uint16_t ui16Tag, uint32_t ui32Config)
void EMACWoLEnter (uint32_t ui32Base)

February 22, 2017

131

Ethernet Controller

10.2.1

10.2.2

Detailed Description

The Ethernet MAC driver API consists of 9 groups of functions:

Initialization and configuration of the MAC and PHY are controlled using EMACInit(), EMACRe-
set(), EMACPHYConfigSet(), EMACConfigSet(), EMACConfigGet(), EMACAddrSet(), EMACAddr-
Get() and EMACNumAddrGet().

Packet filtering options are set and queried using EMACFrameFilterSet(), EMACFrameFilter-
Get(), EMACHashFilterSet(), EMACHashFilterGet(), EMACHashFilterBitCalculate(), EMACAddrFil-
terSet() and EMACAddrFilterGety().

Transmit and receive DMA descriptors are managed using EMACTxDMAPolIDemand(),
EMACRxDMAPolIDemand(), EMACRxDMADescriptorListSet(), EMACRxDMADescriptorListGet(),
EMACRxDMACurrentDescriptorGet(), EMACRxDMACurrentBufferGet(), EMACTxDMADescrip-
torListSet(), EMACTxDMADescriptorListGet(), EMACTxDMACurrentDescriptorGet() and EMAC-
TxDMACurrentBufferGet().

Overall control of the transmitter and receiver are handled using EMACRxWatchdogTimerSet(),
EMACStatusGet(), EMACDMAStateGet(), EMACTxFlush(), EMACTxEnable(), EMACTxDisable(),
EMACRxEnable() and EMACRxDisable().

Interrupt management is controlled using EMACIntEnable(), EMACIntDisable(), EMACIntStatus(),
EMACIntClear(), EMACIntRegister() and EMACIntUnregister().

The PHY, either internal or external, is controlled using EMACPHYWrite(), EMACPHYExtend-
edWrite(), EMACPHYRead(), EMACPHYExtendedRead(), EMACPHYPowerOff() and EMACPHY-
PowerOn().

IEEE1588, Precision Time Protocol timestamping, the integrated PTPD clock and the PPS out-
put signal are controlled using EMACTimestampConfigSet(), EMACTimestampConfigGet(), EMAC-
TimestampAddendSet(), EMACTimestampEnable(), EMACTimestampDisable(), EMACTimes-
tampSysTimeSet(), EMACTimestampSysTimeGet(), EMACTimestampSysTimeUpdate(), EMAC-
TimestampTargetSet(), EMACTimestampTargetintEnable(), EMACTimestampTargetintDisable(),
EMACTimestamplntStatus(), EMACTimestampPPSSimpleModeSet(), EMACTimestampPPSCom-
mandModeSet(), EMACTimestampPPSCommand() and EMACTimestampPPSPeriodSet().

Control of 802.1Q VLAN packet tagging is handled using EMACVLANRxConfigSet(), EMACVLAN-
RxConfigGet(), EMACVLANTxConfigSet(), EMACVLANTxConfigGet(), EMACVLANHashFilterBit-
Calculate(), EMACVLANHashFilterSet() and EMACVLANHashFilterGet().

Handling of remote wakeup packets and power management options are controlled us-
ing EMACRemoteWakeUpFrameFilterSet(), EMACRemoteWakeUpFrameFilterGet(), EMACPow-
erManagementControlSet(), EMACPowerManagementControlGet() and EMACPowerManage-
mentStatusGety().

Ethernet MAC Data Transfer

Data is transfered between system SRAM and the Ethernet MAC using independent transmit and
receive DMA engines. Each engine is controlled using a list of descriptor structures stored in SRAM
and containing frame data buffer pointers, control bits and status information. Two options exist for
controlling the arrangement of the descriptor list. Descriptors may be arranged in a ring with a
fixed spacing between the start of each descriptor and a control bit in the last descriptor to tell the
hardware to return to the head of the list, or they may be configured as a linked list with a pointer in
each descriptor directing the hardware to the next descriptor that is to be processed.

132

February 22, 2017

Ethernet Controller

Although the hardware supports two distinct descriptor formats for both transmit and receive, a ba-
sic 4-word descriptor and an enhanced 8-word descriptor, the DriverLib EMAC driver includes type
definitions and labels for only the enhanced descriptor format. Enhanced descriptors allow support
for many commonly-used advanced features such as TCP/IP/UDP checksum insertion, VLAN tag-
ging and frame timestamping so using this descriptor format throughout prevents complexity and
confusion that could arise due to attempts to handle two somewhat-incompatible formats within the
same code. Applications wishing to use the basic descriptor format may do so but must be careful
not to use the various descriptor-related types and labels defined in emac.h because many of these
will be incorrect for the shorter descriptor format.

The hardware moves through the descriptor lists sequentially until it discovers a descriptor marked
as owned by software at which point it stops and waits for the descriptor to be made available to it.
Ownership of a given descriptor for both the transmit and receive cases is controlled by the most
significant bit of the first descriptor word. When this bit is set, the hardware owns the descriptor
and will read its content and use it to control transmission or reception of a frame. When clear, the
software owns the descriptor and it is safe for the software to read or write the descriptor content
without fear of treading on an ongoing hardware operation.

Management of transmit and receive descriptor lists is the responsibility of software above the
EMAC API. While the API provides function calls to set the list start pointers, query the current
descriptor and tell the hardware to start and stop reading the list, the actual descriptor contents
must be handled above the EMAC layer, typically in the Ethernet interrupt handler which must track
the current descriptor position in each ring and ensure that the correct descriptors are written for
frame transmission or read for frame reception.

To transmit a frame, software must determine the next descriptor in the transmit list which is not
currently owned by the hardware (has the DESO_TX_CTRL_OWN bit in the first descriptor word
clear). A pointer to the frame to be transmitted is then written to the third word of the descriptor
(pvBuffer1) and its length to the second word (ui32Count). If the descriptor list uses the ring
structure rather than the linked list structure, a second buffer may be linked to the same descriptor
using the fourth descriptor word (DES3.pvBuffer2) and bits [28:16] of the second word to store its
size. Various flags controlling checksum insertion or replacement options, source address insertion
or replacement and VLAN tagging are written into the first and second words of the descriptor
(ui32CtriStatus and ui32Count) before the DES0_TX_CTRL_OWN bit in the first word is set to
hand the descriptor over to the hardware. If the transmit DMA was stopped waiting for the next
descriptor to become available, a call to EMACTxDMAPolIDemand() will then ensure that the DMA
restarts and transmits the new frame. Once transmission is completed, the hardware clears the
DESO_TX_CTRL_OWN bit in the descriptor, returning it to the software and, optionally, raises an
interrupt.

Similarly, to receive a frame, software must determine the next descriptor in the receive list which
is not currently owned by the hardware (has the DESO_RX_CTRL_OWN bit in the first descriptor
word clear). A pointer to an empty buffer into which data from the next received frame will be written
must be written to the third word of the descriptor. The buffer size is written into the second word,
taking care to preserve the DES1_RX_CTRL_CHAINED and DES1_RX_CTRL_END_OF_RING
control bits also found there. Again, if the ring structure is used for the descriptor list, a second
buffer may be attached to the descriptor using fields in words 3 and 2 to hold the pointer and
size. The descriptor is then passed to the hardware by setting DES0_RX_CTRL_OWN in the first
descriptor word. If the receiver had previously stopped due to a lack of available descriptors, a call
to EMACRxDMAPolIDemand() will cause it to restart.

When a frame is received, the hardware will write its content into the next available receive buffer.
If the buffer is smaller than the frame, reception continues in the next available buffer (either the
second buffer attached to the current descriptor if a descriptor ring is in use or the first buffer
attached to the next descriptor). Once the frame is completed, additional status is written into

February 22, 2017 133

Ethernet Controller

10.2.3

10.2.3.1

10.2.3.2

the receive descriptors to indicate the packet type, the buffer containing the start of the frame
and the end of the frame, any errors detected and, optionally, IEEE1588 timestamps, before the
DESO0_RX_CTRL_OWN bits in affected descriptors are cleared and those descriptors become
available to the software again.

Data Structure Documentation

tEMACDESS

Definition:
typedef union
{
tEMACDMADescriptor xpLink;
void xpvBuffer?2;
}
tEMACDES3

Members:
pLink When DMA descriptors are used in chained mode, this field is used to provide a link to
the next descriptor.

pvBuffer2 When the DMA descriptors are unchained, this field may be used to point to a
second buffer containing data for transmission or providing storage for a received frame.

Description:
A union used to describe the two overlapping fields forming the third word of the Ethernet DMA
descriptor.

tEMACDMADescriptor

Definition:

typedef struct

{
uint32_t ui32CtrlStatus;
uint32_t ui32Count;
void xpvBufferl;
tEMACDES3 DES3;
uint32_t ui32ExtRxStatus;
uint32_t ui32Reserved;
uint32_t ui32IEEE1588Timelo;
uint32_t ui32IEEE1588TimeHi;

}

tEMACDMADescriptor

Members:
ui32CtriStatus The first DMA descriptor word contains various control and status bits depend-
ing upon whether the descriptor is in the transmit or receive queue. Bit 31 is always the
“OWN?” bit which, when set, indicates that the hardware has control of the descriptor.
ui32Count The second descriptor word contains information on the size of the buffer or buffers
attached to the descriptor and various additional control bits.

134

February 22, 2017

Ethernet Controller

pvBuffer1 The third descriptor word contains a pointer to the buffer containing data to transmit
or into which received data should be written. This pointer must refer to a buffer in internal
SRAM. Pointers to flash or EPIl-connected memory may not be used and will result in the
MAC reporting a bus error.

DES3 The fourth descriptor word contains either a pointer to the next descriptor in the ring or
a pointer to a second data buffer. The meaning of the word is controlled by the “CHAINED”
control bit which appears in the first word of the transmit descriptor or the second word of
the receive descriptor.

Ui32ExtRxStatus The fifth descriptor word is reserved for transmit descriptors but used to
report extended status in a receive descriptor.

ui32Reserved The sixth descriptor word is reserved for both transmit and receive descriptors.

Ui32IEEE1588TimeLo The seventh descriptor word contains the low 32 bits of the 64-bit
timestamp captured for transmitted or received data. The value is set only when the
transmitted or received data contains the end of a packet. Availability of the timestamp
is indicated via a status bit in the first descriptor word.

Ui32IEEE1588TimeHi The eighth descriptor word contains the high 32 bits of the 64-bit times-
tamp captured for transmitted or received data.

Description:
A structure defining a single Ethernet DMA buffer descriptor.

10.2.3.3 tEMACWakeUpFrameFilter

Definition:

typedef struct

{
uint32_t pui32ByteMask[4];
uint8_t pui8Command([4];
uint8_t pui8Offset[4];
uintl6_t puil6CRC[4];

}

tEMACWakeUpFrameFilter

Members:

pui32ByteMask A byte mask for each filter defining which bytes from a sequence of 31 (bit
31 must be clear in each mask) are used to filter incoming packets. A 1 indicates that
the relevant byte is used to update the CRC16 for the filter, a 0 indicates that the byte is
ignored.

pui8Command Defines whether each filter is enabled and, if so, whether it filters mul-
ticast or unicast frames. Valid values are one of EMAC_RWU_FILTER_ENABLE or
EMAC_RWU_FILTER_DISABLE ORed with one of EMAC_RWU_FILTER_UNICAST or
EMAC_RWU_FILTER_MULTICAST.

pui8Offset Determines the byte offset within the frame at which the filter starts examining
bytes. The minimum value for each offset is 12. The first byte of a frame is offset 0.

pui1l6CRC The CRC16 value that is expected for each filter if it passes. The CRC is calculated
using all bytes indicated by the filter's mask.

Description:
This structure defines up to 4 filters that can be used to define specific frames which will cause
the MAC to wake up from sleep mode.

February 22, 2017 135

Ethernet Controller

10.2.4 Function Documentation

10.2.4.1

EMACAddrFilterGet

Gets filtering parameters associated with one of the configured MAC addresses.

Prototype:

uint32_t
EMACAddrFilterGet (uint32_t ui32Base,
uint32_t ui32Index)

Parameters:

ui32Base is the base address of the controller.
ui32index is the index of the MAC address slot for which the filter is to be queried.

Description:

This function returns filtering parameters associated with one of the MAC address slots that
the controller supports. This configuration is used when perfect filtering (rather than hash table
filtering) is selected.

Valid values for ui32Index are from 1 to (number of MAC address slots - 1). The number of
supported MAC address slots may be found by calling EMACNumAddrGet(). MAC index 0 is
the local MAC address and does not have filtering parameters associated with it.

Returns:

Returns the filter configuration as the logical OR of the following labels:

EMAC_FILTER_ADDR_ENABLE indicates that this MAC address is enabled and is used
when performing perfect filtering. If this flag is absent, the MAC address at the given index is
disabled and is not used in filtering.

EMAC_FILTER_SOURCE_ADDR indicates that the MAC address at the given index is com-
pared to the source address of incoming frames while performing perfect filtering. If absent,
the MAC address is compared against the destination address.

EMAC_FILTER_MASK_BYTE_6 indicates that the MAC ignores the sixth byte of the source
or destination address when filtering.

EMAC_FILTER_MASK_BYTE_5 indicates that the MAC ignores the fifth byte of the source or
destination address when filtering.

EMAC_FILTER_MASK_BYTE_4 indicates that the MAC ignores the fourth byte of the source
or destination address when filtering.

EMAC_FILTER_MASK_BYTE_3 indicates that the MAC ignores the third byte of the source
or destination address when filtering.

EMAC_FILTER_MASK_BYTE_2 indicates that the MAC ignores the second byte of the
source or destination address when filtering.

EMAC_FILTER_MASK_BYTE_1 indicates that the MAC ignores the first byte of the source or
destination address when filtering.

10.2.4.2 EMACAddrFilterSet

Sets filtering parameters associated with one of the configured MAC addresses.

136

February 22, 2017

Ethernet Controller

Prototype:
void
EMACAddrFilterSet (uint32_t ui32Base,

uint32_t ui32Index,
uint32_t ui32Confiqg)

Parameters:
ui32Base is the base address of the controller.

ui32Index is the index of the MAC address slot for which the filter is to be set.
ui32Config sets the filter parameters for the given MAC address.

Description:

This function sets filtering parameters associated with one of the MAC address slots that the
controller supports. This configuration is used when perfect filtering (rather than hash table
filtering) is selected.

Valid values for ui32Index are from 1 to (number of MAC address slots - 1). The number of
supported MAC address slots may be found by calling EMACNumAddrGet(). MAC index 0 is
the local MAC address and does not have filtering parameters associated with it.

The ui32Config parameter determines how the given MAC address is used when filtering in-
coming Ethernet frames. It is comprised of a logical OR of the fields:

EMAC_FILTER_ADDR_ENABLE indicates that this MAC address is enabled and should
be used when performing perfect filtering. If this flag is absent, the MAC address at the
given index is disabled and is not used in filtering.

EMAC_FILTER_SOURCE_ADDR indicates that the MAC address at the given index is
compared to the source address of incoming frames while performing perfect filtering. If
absent, the MAC address is compared against the destination address.
EMAC_FILTER_MASK_BYTE_6 indicates that the MAC should ignore the sixth byte of
the source or destination address when filtering.

EMAC_FILTER_MASK_BYTE_5 indicates that the MAC should ignore the fifth byte of the
source or destination address when filtering.

EMAC_FILTER_MASK_BYTE_4 indicates that the MAC should ignore the fourth byte of
the source or destination address when filtering.

EMAC_FILTER_MASK_BYTE_3 indicates that the MAC should ignore the third byte of
the source or destination address when filtering.

EMAC_FILTER_MASK_BYTE_2 indicates that the MAC should ignore the second byte of
the source or destination address when filtering.

EMAC_FILTER_MASK_BYTE_1 indicates that the MAC should ignore the first byte of the
source or destination address when filtering.

Returns:
None.

10.2.4.3 EMACAddrGet

Gets one of the MAC addresses stored in the Ethernet controller.

Prototype:
void
EMACAddrGet (uint32_t ui32Base,

February 22, 2017

137

Ethernet Controller

10.2.4.4

uint32_t ui32Index,
uint8_t xpui8MACAddr)

Parameters:

ui32Base is the base address of the controller.
ui32Index is the zero-based index of the MAC address to return.

PUIBMACAddr is the pointer to the location in which to store the array of MAC-48 address
octets.

Description:

This function reads the currently programmed MAC address into the pui8MACAddr buffer. The
ui32Index parameter defines which of the hardware’s MAC addresses to return. The number
of MAC addresses supported by the controller may be queried using a call to EMACNumAddr-
Get(). Index 0 refers to the MAC address of the local node. Other indices are used to define
MAC addresses when filtering incoming packets.

The address is written to the puiSBMACAddr array ordered with the first byte to be transmit-
ted in the first array entry. For example, if the address is written in its usual form with the
Organizationally Unique Identifier (OUI) shown first as:

AC-DE-48-00-00-80

the data is returned with OxAC in the first byte of the array, OxDE in the second, 0x48 in the
third and so on.

Returns:

None.

EMACAddrSet

Sets the MAC address of the Ethernet controller.

Prototype:

void
EMACAddrSet (uint32_t ui32Base,
uint32_t ui32Index,
const uint8_t xpui8MACAddr)

Parameters:

ui32Base is the base address of the Ethernet controller.
ui32Index is the zero-based index of the MAC address to set.
PUIBMACAddr is the pointer to the array of MAC-48 address octets.

Description:

This function programs the IEEE-defined MAC-48 address specified in puiSMACAddr into the
Ethernet controller. This address is used by the Ethernet controller for hardware-level filtering
of incoming Ethernet packets (when promiscuous mode is not enabled). Index 0 is used to
hold the local node’s MAC address which is inserted into all transmitted packets.

The controller may support several Ethernet MAC address slots, each of which may be pro-
grammed independently and used to filter incoming packets. The number of MAC addresses
that the hardware supports may be queried using a call to EMACNumAddrGet(). The value
of the uiB2Index parameter must lie in the range from 0 to (number of MAC addresses - 1)
inclusive.

138

February 22, 2017

Ethernet Controller

The MAC-48 address is defined as 6 octets, illustrated by the following example address. The
numbers are shown in hexadecimal format.

AC-DE-48-00-00-80

In this representation, the first three octets (AC-DE-48) are the Organizationally Unique Iden-
tifier (OUI). This is a number assigned by the IEEE to an organization that requests a block of
MAC addresses. The last three octets (00-00-80) are a 24-bit number managed by the OUI
owner to uniquely identify a piece of hardware within that organization that is to be connected
to the Ethernet.

In this representation, the octets are transmitted from left to right, with the “AC” octet being
transmitted first and the “80” octet being transmitted last. Within an octet, the bits are transmit-
ted LSB to MSB. For this address, the first bit to be transmitted would be “0”, the LSB of “AC”,
and the last bit to be transmitted would be “1”, the MSB of “80”.

The address passed to this function in the puiSMACAddr array is ordered with the first byte
to be transmitted in the first array entry. For example, the address given above could be
represented using the following array:

uint8_t g_pui8MACAddr|] = { OxAC, 0xDE, 0x48, 0x00, 0x00, 0x80 };

If the MAC address set by this function is currently enabled, it remains enabled following this
call. Similarly, any filter configured for the MAC address remains unaffected by a change in the
address.

Returns:
None.

10.2.4.5 EMACConfigGet

Returns the Ethernet MAC’s current basic configuration parameters.

Prototype:
void
EMACConfigGet (uint32_t ui32Base,
uint32_t *pui32Config,
uint32_t xpui32Mode,
uint32_t *xpui32RxMaxFrameSize)

Parameters:
ui32Base is the base address of the Ethernet controller.

pui32Config points to storage that is written with Ethernet MAC configuration.
pui32Mode points to storage that is written with Ethernet MAC mode information.
pui32RxMaxFrameSize points to storage that is written with the maximum receive frame size.

Description:
This function is called to query the basic operating parameters for the MAC and its DMA en-
gines.

The pui32Config parameter is written with the logical OR of various fields and flags. The first
field describes which MAC address is used during insertion or replacement for all transmitted
frames. Valid options are

= EMAC_CONFIG_USE_MACADDR1

February 22, 2017 139

Ethernet Controller

= EMAC_CONFIG_USE_MACADDRO
The interframe gap between transmitted frames is given using one of the following values:

EMAC_CONFIG_IF_GAP_96BITS
EMAC_CONFIG_IF_GAP_88BITS
EMAC_CONFIG_IF_GAP_80BITS
EMAC_CONFIG_IF_GAP_72BITS
EMAC_CONFIG_IF_GAP_64BITS
EMAC_CONFIG_IF_GAP_56BITS
EMAC_CONFIG_IF_GAP_48BITS
EMAC_CONFIG_IF_GAP_40BITS

The number of bytes of preamble added to the beginning of every transmitted frame is de-
scribed using one of the following values:

= EMAC_CONFIG_7BYTE_PREAMBLE
= EMAC_CONFIG_5BYTE_PREAMBLE
= EMAC_CONFIG_3BYTE_PREAMBLE

The back-off limit determines the range of the random time that the MAC delays after a collision
and before attempting to retransmit a frame. One of the following values provides the currently
selected limit. In each case the retransmission delay in terms of 512 bit time slots, is the lower
of (2 #x N) and a random number between 0 and the reported backoff-limit.

EMAC_CONFIG_BO_LIMIT_1024
EMAC_CONFIG_BO_LIMIT_256
EMAC_CONFIG_BO_LIMIT_16
EMAC_CONFIG_BO_LIMIT 2

Handling of insertion or replacement of the source address in all transmitted frames is de-
scribed by one of the following fields:

m EMAC_CONFIG_SA_INSERT causes the MAC address (0 or 1 depending on whether
EMAC_CONFIG_USE_MACADDRO or EMAC_CONFIG_USE_MACADDR1 was speci-
fied) to be inserted into all transmitted frames.

m EMAC_CONFIG_SA_REPLACE causes the MAC address to be replaced with the se-
lected address in all transmitted frames.

m EMAC_CONFIG_SA_ FROM_DESCRIPTOR causes control of source address insertion
or deletion to be controlled by fields in the DMA transmit descriptor, allowing control on a
frame-by-frame basis.

Whether the interface attempts to operate in full- or half-duplex mode is reported by one of the
following flags:

= EMAC_CONFIG_FULL_DUPLEX
= EMAC_CONFIG_HALF_DUPLEX

The following additional flags may also be included:

m EMAC_CONFIG_2K_PACKETS indicates that IEEE802.3as support for 2K packets is en-
abled. When present, the MAC considers all frames up to 2000 bytes in length as nor-
mal packets. When EMAC_CONFIG_JUMBO_ENABLE is not reported, all frames larger
than 2000 bytes are treated as Giant frames. The value of this flag should be ignored if
EMAC_CONFIG_JUMBO_ENABLE is also reported.

140

February 22, 2017

Ethernet Controller

m EMAC_CONFIG_STRIP_CRC indicates that the 4-byte CRC of all Ethernet type frames
is being stripped and dropped before the frame is forwarded to the application.

= EMAC_CONFIG_JABBER_DISABLE indicates that the the jabber timer on the transmitter
is disabled, allowing frames of up to 16384 bytes to be transmitted. If this flag is absent,
the MAC does not allow more than 2048 (or 10240 if EMAC_CONFIG_JUMBO_ENABLE
is reported) bytes to be sent in any one frame.

m EMAC_CONFIG_JUMBO_ENABLE indicates that Jumbo Frames of up to 9018 (or 9022
if using VLAN tagging) are enabled.

m EMAC_CONFIG_CS_DISABLE indicates that Carrier Sense is disabled during transmis-
sion when operating in half-duplex mode.

m EMAC_CONFIG_100MBPS indicates that the MAC is using 100Mbps signaling to com-
municate with the PHY.

m EMAC_CONFIG_RX_OWN_DISABLE indicates that reception of transmitted frames is
disabled when operating in half-duplex mode.

m EMAC_CONFIG_LOOPBACK indicates that internal loopback is enabled.

= EMAC_CONFIG_CHECKSUM_OFFLOAD indicates that IPv4 header checksum checking
and IPv4 or IPv6 TCP, UPD or ICMP payload checksum checking is enabled. The results
of the checksum calculations are reported via status fields in the DMA receive descriptors.

m EMAC_CONFIG_RETRY_DISABLE indicates that retransmission is disabled in cases
where half-duplex mode is in use and a collision occurs. This condition causes the current
frame to be ignored and a frame abort to be reported in the transmit frame status.

m EMAC_CONFIG_AUTO_CRC_STRIPPING indicates that the last 4 bytes (frame check
sequence) from all Ether type frames are being stripped before frames are forwarded to
the application.

m EMAC_CONFIG_DEFERRAL_CHK_ENABLE indicates that transmit deferral checking is
disabled in half-duplex mode. When enabled, the transmitter reports an error if it is unable
to transmit a frame for more than 24288 bit times (or 155680 bit times in Jumbo frame
mode) due to an active carrier sense signal on the Mil.

m EMAC_CONFIG_TX_ENABLED indicates that the MAC transmitter is currently enabled.
m EMAC_CONFIG_RX_ENABLED indicates that the MAC receiver is currently enabled.

The pui32ModeFlags parameter is written with operating parameters related to the internal
MAC FIFOs. It comprises a logical OR of the following fields. The first field reports the transmit
FIFO threshold. Transmission of a frame begins when this amount of data or a full frame exists
in the transmit FIFO. This field should be ignored if EMAC_MODE_TX _STORE_FORWARD is
also reported. One of the following values is reported:

EMAC_MODE_TX_THRESHOLD_16_BYTES
EMAC_MODE_TX_THRESHOLD_24_BYTES
EMAC_MODE_TX_THRESHOLD_32_BYTES
EMAC_MODE_TX_THRESHOLD_40_BYTES
EMAC_MODE_TX_THRESHOLD_64_BYTES
EMAC_MODE_TX_THRESHOLD_128 BYTES
EMAC_MODE_TX_THRESHOLD_192_BYTES
EMAC_MODE_TX_THRESHOLD_256_BYTES

The second field reports the receive FIFO threshold. DMA transfers of received data begin
either when the receive FIFO contains a full frame or this number of bytes. This field should be
ignored if EMAC_MODE_RX_STORE_FORWARD is included. One of the following values is
reported:

February 22, 2017 141

Ethernet Controller

EMAC_MODE_RX_THRESHOLD_64_BYTES
EMAC_MODE_RX_THRESHOLD_32_BYTES
EMAC_MODE_RX_THRESHOLD_96_BYTES
EMAC_MODE_RX_THRESHOLD_128_BYTES

The following additional flags may be included:

EMAC_MODE_KEEP_BAD_CRC indicates that frames with TCP/IP checksum errors are
being forwarded to the application if those frames do not have any errors (including FCS
errors) in the Ethernet framing. In these cases, the frames have errors only in the pay-
load. If this flag is not reported, all frames with any detected error are discarded unless
EMAC_MODE_RX_ERROR_FRAMES is also reported.
EMAC_MODE_RX_STORE_FORWARD indicates that the receive DMA is configured to
read frames from the FIFO only after the complete frame has been written to it. If this
mode is enabled, the receive threshold is ignored.

EMAC_MODE_RX_FLUSH_DISABLE indicates that the flushing of received frames is
disabled in cases where receive descriptors or buffers are unavailable.
EMAC_MODE_TX_STORE_FORWARD indicates that the transmitter is configured to
transmit a frame only after the whole frame has been written to the transmit FIFO. If this
mode is enabled, the transmit threshold is ignored.
EMAC_MODE_RX_ERROR_FRAMES indicates that all frames other than runt error
frames are being forwarded to the receive DMA regardless of any errors detected in the
frames.

EMAC_MODE_RX_UNDERSIZED_FRAMES indicates that undersized frames (frames
shorter than 64 bytes but with no errors) are being forwarded to the application. If this
option is not reported, all undersized frames are dropped by the receiver unless it has
already started transferring them to the receive FIFO due to the receive threshold setting.
EMAC_MODE_OPERATE_2ND_FRAME indicates that the transmit DMA is configured
to operate on a second frame while waiting for the previous frame to be transmitted and
associated status and timestamps to be reported. If absent, the transmit DMA works on a
single frame at any one time, waiting for that frame to be transmitted and its status to be
received before moving on to the next frame.

EMAC_MODE_TX_DMA_ENABLED indicates that the transmit DMA engine is currently
enabled.

EMAC_MODE_RX_DMA_ENABLED indicates that the receive DMA engine is currently
enabled.

The pui32RxMaxFrameSize is written with the currently configured maximum receive packet
size. Packets larger than this are flagged as being in error.

Returns:

None.

10.2.4.6 EMACConfigSet

Configures basic Ethernet MAC operation parameters.

Prototype:

void
EMACConfigSet (uint32_t ui32Base,

142

February 22, 2017

Ethernet Controller

uint32_t ui32Config,
uint32_t ui32ModeFlags,
uint32_t ui32RxMaxFrameSize)

Parameters:
ui32Base is the base address of the Ethernet controller.

ui32Config provides various flags and values configuring the MAC.
ui32ModeFlags provides configuration relating to the transmit and receive DMA engines.
ui32RxMaxFrameSize sets the maximum receive frame size above which an error is reported.

Description:
This function is called to configure basic operating parameters for the MAC and its DMA en-
gines.

The ui32Config parameter is the logical OR of various fields and flags. The first field determines
which MAC address is used during insertion or replacement for all transmitted frames. Valid
options are

m EMAC_CONFIG_USE_MACADDR1 and
m EMAC_CONFIG_USE_MACADDRO

The interframe gap between transmitted frames is controlled using one of the following values:

EMAC_CONFIG_IF_GAP_96BITS
EMAC_CONFIG_IF_GAP_88BITS
EMAC_CONFIG_IF_GAP_80BITS
EMAC_CONFIG_IF_GAP_72BITS
EMAC_CONFIG_IF_GAP_64BITS
EMAC_CONFIG_IF_GAP_56BITS
EMAC_CONFIG_IF_GAP_48BITS
EMAC_CONFIG_IF_GAP_40BITS

The number of bytes of preamble added to the beginning of every transmitted frame is selected
using one of the following values:

= EMAC_CONFIG_7BYTE_PREAMBLE
= EMAC_CONFIG_5BYTE_PREAMBLE
= EMAC_CONFIG_3BYTE_PREAMBLE

The back-off limit determines the range of the random time that the MAC delays after a collision
and before attempting to retransmit a frame. One of the following values must be used to select
this limit. In each case, the retransmission delay in terms of 512 bit time slots, is the lower of
(2 *x N) and a random number between 0 and the selected backoff-limit.

EMAC_CONFIG_BO_LIMIT_1024
EMAC_CONFIG_BO_LIMIT_256
EMAC_CONFIG_BO_LIMIT_16
EMAC_CONFIG_BO_LIMIT 2

Control over insertion or replacement of the source address in all transmitted frames is provided
by using one of the following fields:

m EMAC_CONFIG_SA_INSERT causes the MAC address (0 or 1 depending on whether
EMAC_CONFIG_USE_MACADDRO or EMAC_CONFIG_USE_MACADDR1 was speci-
fied) to be inserted into all transmitted frames.

February 22, 2017 143

Ethernet Controller

EMAC_CONFIG_SA_REPLACE causes the MAC address to be replaced with the se-
lected address in all transmitted frames.

EMAC_CONFIG_SA_FROM_DESCRIPTOR causes control of source address insertion
or deletion to be controlled by fields in the DMA transmit descriptor, allowing control on a
frame-by-frame basis.

Whether the interface attempts to operate in full- or half-duplex mode is controlled by one of
the following flags:

EMAC_CONFIG_FULL_DUPLEX
EMAC_CONFIG_HALF_DUPLEX

The following additional flags may also be specified:

EMAC_CONFIG_2K_PACKETS enables IEEE802.3as support for 2K packets. When
specified, the MAC considers all frames up to 2000 bytes in length as nor-
mal packets. When EMAC_CONFIG_JUMBO_ENABLE is not specified, all frames
larger than 2000 bytes are treated as Giant frames. This flag is ignored if
EMAC_CONFIG_JUMBO_ENABLE is specified.

EMAC_CONFIG_STRIP_CRC causes the 4-byte CRC of all Ethernet type frames to be
stripped and dropped before the frame is forwarded to the application.
EMAC_CONFIG_JABBER_DISABLE disables the jabber timer on the transmitter and en-
ables frames of up to 16384 bytes to be transmitted. If this flag is absent, the MAC does
not allow more than 2048 (or 10240 if EMAC_CONFIG_JUMBO_ENABLE is specified)
bytes to be sent in any one frame.

EMAC_CONFIG_JUMBO_ENABLE enables Jumbo Frames, allowing frames of up to
9018 (or 9022 if using VLAN tagging) to be handled without reporting giant frame errors.
EMAC_CONFIG_100MBPS forces the MAC to communicate with the PHY using 100Mbps
signaling. If this option is not specified, the MAC uses 10Mbps signaling. This speed set-
ting is important when using an external RMII PHY where the selected rate must match the
PHY’s setting which may have been made as a result of auto-negotiation. When using the
internal PHY or an external MIl PHY, the signaling rate is controlled by the PHY- provided
transmit and receive clocks.

EMAC_CONFIG_CS_DISABLE disables Carrier Sense during transmission when operat-
ing in half-duplex mode.

EMAC_CONFIG_RX_OWN_DISABLE disables reception of transmitted frames when op-
erating in half-duplex mode.

= EMAC_CONFIG_LOOPBACK enables internal loopback.

EMAC_CONFIG_CHECKSUM_OFFLOAD enables IPv4 header checksum checking and
IPv4 or IPv6 TCP, UPD or ICMP payload checksum checking. The results of the checksum
calculations are reported via status fields in the DMA receive descriptors.
EMAC_CONFIG_RETRY_DISABLE disables retransmission in cases where half-duplex
mode is in use and a collision occurs. This condition causes the current frame to be
ignored and a frame abort to be reported in the transmit frame status.
EMAC_CONFIG_AUTO_CRC_STRIPPING strips the last 4 bytes (frame check sequence)
from all Ether type frames before forwarding the frames to the application.
EMAC_CONFIG_DEFERRAL_CHK_ENABLE enables transmit deferral checking in half-
duplex mode. When enabled, the transmitter reports an error if it is unable to transmit a
frame for more than 24288 bit times (or 155680 bit times in Jumbo frame mode) due to an
active carrier sense signal on the MIl.

The ui32ModeFlags parameter sets operating parameters related to the internal MAC FIFOs.
It comprises a logical OR of the following fields. The first selects the transmit FIFO threshold.

144

February 22, 2017

Ethernet Controller

Transmission of a frame begins when this amount of data or a full frame exists in the transmit
FIFO. This field is ignored if EMAC_MODE_TX_STORE_FORWARD is included. One of the
following must be specified:

EMAC_MODE_TX_THRESHOLD_16_BYTES
EMAC_MODE_TX_THRESHOLD_24 BYTES
EMAC_MODE_TX_THRESHOLD_32_BYTES
EMAC_MODE_TX_THRESHOLD_40_BYTES
EMAC_MODE_TX_THRESHOLD_64_BYTES
EMAC_MODE_TX_THRESHOLD_128_BYTES
EMAC_MODE_TX_THRESHOLD_192_BYTES
EMAC_MODE_TX_THRESHOLD_256_BYTES

The second field controls the receive FIFO threshold. DMA transfers of received data begin
either when the receive FIFO contains a full frame or this number of bytes. This field is ignored
if EMAC_MODE_RX_STORE_FORWARD is included. One of the following must be specified:

EMAC_MODE_RX_THRESHOLD_64_BYTES
EMAC_MODE_RX_THRESHOLD_32_BYTES
EMAC_MODE_RX_THRESHOLD_96_BYTES
EMAC_MODE_RX_THRESHOLD_128_BYTES

The following additional flags may be specified:

m EMAC_MODE_KEEP_BAD_CRC causes frames with TCP/IP checksum errors to be for-
warded to the application if those frames do not have any errors (including FCS er-
rors) in the Ethernet framing. In these cases, the frames have errors only in the pay-
load. If this flag is not specified, all frames with any detected error are discarded unless
EMAC_MODE_RX_ERROR_FRAMES is also specified.

m EMAC_MODE_RX_STORE_FORWARD causes the receive DMA to read frames from the
FIFO only after the complete frame has been written to it. If this mode is enabled, the
receive threshold is ignored.

m EMAC_MODE_RX_FLUSH_DISABLE disables the flushing of received frames in cases
where receive descriptors or buffers are unavailable.

= EMAC_MODE_TX_STORE_FORWARD causes the transmitter to start transmitting a
frame only after the whole frame has been written to the transmit FIFO. If this mode is
enabled, the transmit threshold is ignored.

m EMAC_MODE_RX_ERROR_FRAMES causes all frames other than runt error frames to
be forwarded to the receive DMA regardless of any errors detected in the frames.

m EMAC_MODE_RX_UNDERSIZED FRAMES causes undersized frames (frames shorter
than 64 bytes but with no errors) to the application. If this option is not selected, all under-
sized frames are dropped by the receiver unless it has already started transferring them to
the receive FIFO due to the receive threshold setting.

m EMAC_MODE_OPERATE_2ND_FRAME enables the transmit DMA to operate on a sec-
ond frame while waiting for the previous frame to be transmitted and associated status and
timestamps to be reported. If absent, the transmit DMA works on a single frame at any one
time, waiting for that frame to be transmitted and its status to be received before moving
on to the next frame.

The uiB2RxMaxFrameSize parameter may be used to override the default setting for the maxi-
mum number of bytes that can be received in a frame before that frame is flagged as being in
error. If the parameter is set to 0, the default hardware settings are applied. If non-zero, any

February 22, 2017 145

Ethernet Controller

frame received which is longer than the ui32RxMaxFrameSize, regardless of whether the MAC
is configured for normal or Jumbo frame operation, is flagged as an error.

Returns:
None.

10.2.4.7 EMACDMAStateGet

Returns the current states of the Ethernet MAC transmit and receive DMA engines.

Prototype:
uint32_t
EMACDMAStateGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to query the current states of the transmit and receive DMA engines.
The return value contains two fields, one providing the transmit state and the other the receive
state. Macros EMAC_TX_DMA_STATE() and EMAC_RX_DMA_STATE() may be used to ex-
tract these fields from the returned value. Alternatively, masks EMAC_DMA_TXSTAT_MASK
and EMAC_DMA_RXSTAT_MASK may be used directly to mask out the individual states from
the returned value.

Returns:
Returns the states of the transmit and receive DMA engines. These states are ORed together
into a single word containing one of:

m EMAC_DMA_TXSTAT_STOPPED indicating that the transmit engine is stopped.
m EMAC_DMA_TXSTAT_RUN_FETCH_DESC indicating that the transmit engine is fetching the
next descriptor.

m EMAC_DMA_TXSTAT_RUN_WAIT_STATUS indicating that the transmit engine is waiting for
status from the MAC.

m EMAC_DMA_TXSTAT_RUN_READING indicating that the transmit engine is currently trans-
ferring data from memory to the MAC transmit FIFO.

m EMAC_DMA_TXSTAT_RUN_CLOSE_DESC indicating that the transmit engine is closing the
descriptor after transmission of the buffer data.

m EMAC_DMA_TXSTAT_TS_WRITE indicating that the transmit engine is currently writing
timestamp information to the descriptor.

= EMAC_DMA_TXSTAT_SUSPENDED indicating that the transmit engine is suspended due to
the next descriptor being unavailable (owned by the host) or a transmit buffer underflow.

and one of:

m EMAC_DMA_RXSTAT_STOPPED indicating that the receive engine is stopped.

m EMAC_DMA_RXSTAT_RUN_FETCH_DESC indicating that the receive engine is fetching the
next descriptor.

m EMAC_DMA_RXSTAT_RUN_WAIT_PACKET indicating that the receive engine is waiting for
the next packet.

146 February 22, 2017

Ethernet Controller

m EMAC_DMA_RXSTAT_SUSPENDED indicating that the receive engine is suspended due to
the next descriptor being unavailable.

= EMAC_DMA_RXSTAT_RUN_CLOSE_DESC indicating that the receive engine is closing the
descriptor after receiving a buffer of data.

m EMAC_DMA_RXSTAT_TS_WRITE indicating that the transmit engine is currently writing
timestamp information to the descriptor.

m EMAC_DMA_RXSTAT_RUN_RECEIVING indicating that the receive engine is currently trans-
ferring data from the MAC receive FIFO to memory.

Additionally, a DMA bus error may be signaled using EMAC_DMA_ERROR. If this flag is present,
the source of the error is identified using one of the following values which may be extracted from
the return value using EMAC_DMA_ERR_MASK:

m EMAC_DMA_ERR_RX_DATA_WRITE indicates that an error occurred when writing received
data to memory.

= EMAC_DMA_ERR_TX_DATA_READ indicates that an error occurred when reading data from
memory for transmission.

= EMAC_DMA_ERR_RX_DESC_WRITE indicates that an error occurred when writing to the
receive descriptor.

m EMAC_DMA_ERR_TX_DESC_WRITE indicates that an error occurred when writing to the
transmit descriptor.

= EMAC_DMA_ERR_RX_DESC_READ indicates that an error occurred when reading the re-
ceive descriptor.

m EMAC_DMA_ERR_TX_DESC_READ indicates that an error occurred when reading the
transmit descriptor.

10.2.4.8 EMACFrameFilterGet

Returns the current Ethernet frame filtering settings.

Prototype:
uint32_t
EMACFrameFilterGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be called to retrieve the frame filtering configuration set using a prior call to
EMACFramefFilterSet().

Returns:
Returns a value comprising the logical OR of various flags indicating the frame filtering options
in use. Possible flags are:

m EMAC_FRMFILTER_RX_ALL indicates that the MAC to is configured to pass all received
frames regardless of whether or not they pass any address filter that is configured. The receive
status word in the relevant DMA descriptor is updated to indicate whether the configured filter
passed or failed for the frame.

February 22, 2017 147

Ethernet Controller

EMAC_FRMFILTER_VLAN indicates that the MAC is configured to drop any frames which do
not pass the VLAN tag comparison.

EMAC_FRMFILTER_HASH_AND_PERFECT indicates that the MAC is configured to
pass frames if they match either the hash filter or the perfect filter. If this flag
is absent, frames passing based on the result of a single filter, the perfect filter
if EMAC_FRMFILTER_HASH_MULTICAST or EMAC_FRMFILTER_HASH_UNICAST are
clear or the hash filter otherwise.

EMAC_FRMFILTER_SADDR indicates that the MAC is configured to drop received frames
when the source address field in the frame does not match the values programmed into the
enabled SA registers.

EMAC_FRMFILTER_INV_SADDR enables inverse source address filtering. When this option
is specified, frames for which the SA does not match the SA registers are marked as passing
the source address filter.

EMAC_FRMFILTER_BROADCAST indicates that the MAC is configured to discard all incom-
ing broadcast frames.

EMAC_FRMFILTER_PASS_MULTICAST indicates that the MAC is configured to pass all in-
coming frames with multicast destinations addresses.

EMAC_FRMFILTER_INV_DADDR indicates that the sense of the destination address filtering
for both unicast and multicast frames is inverted.

EMAC_FRMFILTER_HASH_MULTICAST indicates that destination address filtering of re-
ceived multicast frames is enabled using the hash table. If absent, perfect destination address
filtering is used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_ PERFECT, this
flag indicates that the hash filter should be used for incoming multicast packets along with the
perfect filter.

EMAC_FRMFILTER_HASH_UNICAST indicates that destination address filtering of received
unicast frames is enabled using the hash table. If absent, perfect destination address filtering
is used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this flag
indicates that the hash filter should be used for incoming unicast packets along with the perfect
filter.

EMAC_FRMFILTER_PROMISCUOUS indicates that the MAC is configured to operate in
promiscuous mode where all received frames are passed to the application and the SA and
DA filter status bits of the descriptor receive status word are always cleared.

Control frame filtering configuration is indicated by one of the following values which may be ex-
tracted from the returned value using the mask EMAC_FRMFILTER_PASS_MASK:

m EMAC_FRMFILTER_PASS_NO_CTRL prevents any control frame from reaching the applica-

tion.

m EMAC_FRMFILTER_PASS_ NO_PAUSE passes all control frames other than PAUSE even if

they fail the configured address filter.

m EMAC_FRMFILTER_PASS_ALL_CTRL passes all control frames, including PAUSE even if

they fail the configured address filter.

= EMAC_FRMFILTER_PASS_ADDR_CTRL passes all control frames only if they pass the con-

figured address filter.

10.2.4.9 EMACFrameFilterSet

Sets options related to Ethernet frame filtering.

148

February 22, 2017

Ethernet Controller

Prototype:
void
EMACFrameFilterSet (uint32_t ui32Base,

uint32_t ui32FilterOpts)

Parameters:
ui32Base is the base address of the controller.

ui32FilterOpts is a logical OR of flags defining the required MAC address filtering options.

Description:

This function allows various filtering options to be defined and allows an application to control
which frames are received based on various criteria related to the frame source and destination
MAC addresses or VLAN tagging.

The ui32FilterOpts parameter is a logical OR of any of the following flags:

EMAC_FRMFILTER_RX_ALL configures the MAC to pass all received frames regardless
of whether or not they pass any address filter that is configured. The receive status word
in the relevant DMA descriptor is updated to indicate whether the configured filter passed
or failed for the frame.

EMAC_FRMFILTER_VLAN configures the MAC to drop any frames that do not pass the
VLAN tag comparison.

EMAC_FRMFILTER_HASH_AND_PERFECT configures the MAC to filter frames
based on both any perfect filters set and the hash filter if enabled using
EMAC_FRMFILTER_HASH_UNICAST or EMAC_FRMFILTER_HASH_MULTICAST. In
this case, only if both filters fail is the packet rejected. If this option is absent, only one
of the filter types is used, as controlled by EMAC_FRMFILTER_HASH_UNICAST and
EMAC_FRMFILTER_HASH_MULTICAST for unicast and multicast frames respectively.
EMAC_FRMFILTER_SADDR configures the MAC to drop received frames when the
source address field in the frame does not match the values programmed into the enabled
SA registers.

EMAC_FRMFILTER_INV_SADDR enables inverse source address filtering. When this
option is specified, frames for which the SA does not match the SA registers are marked
as passing the source address filter.

EMAC_FRMFILTER_BROADCAST configures the MAC to discard all incoming broadcast
frames.

EMAC_FRMFILTER_PASS_MULTICAST configures the MAC to pass all incoming frames
with multicast destinations addresses.

EMAC_FRMFILTER_INV_DADDR inverts the sense of the destination address filtering for
both unicast and multicast frames.

EMAC_FRMFILTER_HASH_MULTICAST enables destination address filtering of re-
ceived multicast frames using the hash table. If absent, perfect destination address filtering
is used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this flag
indicates that the hash filter should be used for incoming multicast packets along with the
perfect filter.

EMAC_FRMFILTER_HASH_UNICAST enables destination address filtering of received
unicast frames using the hash table. If absent, perfect destination address filtering is
used. If used in conjunction with EMAC_FRMFILTER_HASH_AND_PERFECT, this flag
indicates that the hash filter should be used for incoming unicast packets along with the
perfect filter.

EMAC_FRMFILTER_PROMISCUOUS configures the MAC to operate in promiscuous
mode where all received frames are passed to the application and the SA and DA filter
status bits of the descriptor receive status word are always cleared.

February 22, 2017

149

Ethernet Controller

Control frame filtering may be configured by ORing one of the following values into
ui32FilterOpts:

m EMAC_FRMFILTER_PASS_NO_CTRL prevents any control frame from reaching the ap-
plication.

m EMAC_FRMFILTER_PASS_NO_PAUSE passes all control frames other than PAUSE
even if they fail the configured address filter.

m EMAC_FRMFILTER_PASS_ ALL_CTRL passes all control frames, including PAUSE even
if they fail the configured address filter.

m EMAC_FRMFILTER_PASS_ADDR_CTRL passes all control frames only if they pass the
configured address filter.

Returns:
None.

10.2.4.10 EMACHashFilterBitCalculate

Returns the bit number to set in the MAC hash filter corresponding to a given MAC address.

Prototype:
uint32_t
EMACHashFilterBitCalculate (uint8_t #*pui8MACAddr)

Parameters:
PUiBMACAddr points to a buffer containing the 6-byte MAC address for which the hash filter
bit is to be determined.

Description:
This function may be used to determine which bit in the MAC address hash filter to set to de-
scribe a given 6-byte MAC address. The returned value is a 6-bit number where bit 5 indicates
which of the two hash table words is affected and the bottom 5 bits indicate the bit number to
set within that word. For example, if 0x22 (100010b) is returned, this indicates that bit 2 of word
1 (uiB2HashHi as passed to EMACHashFilterSet()) must be set to describe the passed MAC
address.

Returns:
Returns the bit number to set in the MAC hash table to describe the passed MAC address.

10.2.4.11 EMACHashFilterGet

Returns the current MAC address hash filter table.

Prototype:
void
EMACHashFilterGet (uint32_t ui32Base,
uint32_t *pui32HashHi,
uint32_t xpui32HashLo)

Parameters:
ui32Base is the base address of the controller.

150 February 22, 2017

Ethernet Controller

pui32HashHi points to storage to be written with the upper 32 bits of the current 64-bit hash
filter table.

pui32HashLo points to storage to be written with the lower 32 bits of the current 64-bit hash
filter table.

Description:
This function may be used to retrieve the current 64-bit hash filter table from the MAC prior to
making changes and setting the new hash filter via a call to EMACHashFilterSety().

Hash table filtering allows many different MAC addresses to be filtered simultaneously at the
cost of some false-positive results in the form of packets passing the filter when their MAC
address was not one of those required. A CRC of the packet source or destination MAC
address is calculated and the bottom 6 bits are used as a bit index into the 64-bit hash filter
table. If the bit in the hash table is set, the filter is considered to have passed. If the bit is
clear, the filter fails and the packet is rejected (assuming normal rather than inverse filtering is
configured).

Returns:
None.

10.2.4.12 EMACHashFilterSet

Sets the MAC address hash filter table.

Prototype:
void
EMACHashFilterSet (uint32_t ui32Base,
uint32_t ui32HashHi,
uint32_t ui32HashLo)

Parameters:
ui32Base is the base address of the controller.

ui32HashHi is the upper 32 bits of the current 64-bit hash filter table to set.
ui32HashLo is the lower 32 bits of the current 64-bit hash filter table to set.

Description:
This function may be used to set the current 64-bit hash filter table used by the MAC to
filter incoming packets when hash filtering is enabled. Hash filtering is enabled by pass-
ing EMAC_FRMFILTER_HASH_UNICAST and/or EMAC_FRMFILTER_HASH_MULTICAST
in the ui32FilterOpts parameter to EMACFrameFilterSet(). The current hash filter may be re-
trieved by calling EMACHashFilterGet().

Hash table filtering allows many different MAC addresses to be filtered simultaneously at the
cost of some false-positive results (in the form of packets passing the filter when their MAC
address was not one of those required). A CRC of the packet source or destination MAC
address is calculated and the bottom 6 bits are used as a bit index into the 64-bit hash filter
table. If the bit in the hash table is set, the filter is considered to have passed. If the bit is
clear, the filter fails and the packet is rejected (assuming normal rather than inverse filtering is
configured).

Returns:
None.

February 22, 2017 151

Ethernet Controller

10.2.4.13 EMACInit

Initializes the Ethernet MAC and sets bus-related DMA parameters.

Prototype:
void
EMACInit (uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
uint32_t
Parameters:

ui32Base,
ui32SysClk,
ui32BusConfig,
ui32RxBurst,
ui32TxBurst,
ui32DescSkipSize)

ui32Base is the base address of the Ethernet controller.

ui32SysCik is the current system clock frequency in Hertz.
ui32BusConfig defines the bus operating mode for the Ethernet MAC DMA controller.
ui32RxBurst is the maximum receive burst size in words.
ui32TxBurst is the maximum transmit burst size in words.

ui32DescSkipSize is the number of 32-bit words to skip between two unchained DMA de-
scriptors. Values in the range 0 to 31 are valid.

Description:

This function sets bus-related parameters for the Ethernet MAC DMA engines. It must be
called after EMACPHYConfigSet() and called again after any subsequent call to EMACPHY-

ConfigSet().

The uiB2BusConfig parameter is the logical OR of various fields. The first sets the DMA chan-

nel priority weight:

EMAC_BCONFIG_DMA_PRIO_WEIGHT_1
EMAC_BCONFIG_DMA_PRIO_WEIGHT_2
EMAC_BCONFIG_DMA_PRIO_WEIGHT_3
EMAC_BCONFIG_DMA_PRIO_WEIGHT_4

The second field sets the receive and transmit priorities used when arbitrating between
the Rx and Tx DMA. The priorities are Rx:Tx unless EMAC_BCONFIG_TX_PRIORITY is
also specified, in which case they become Tx:Rx. The priority provided here is ignored if
EMAC_BCONFIG_PRIORITY_FIXED is specified.

EMAC_BCONFIG_PRIORITY_1_1
EMAC_BCONFIG_PRIORITY_2_1
EMAC_BCONFIG_PRIORITY_3_1
EMAC_BCONFIG_PRIORITY 4_1

The following additional flags may also be defined:

m EMAC_BCONFIG_TX_PRIORITY indicates that the transmit DMA should be higher pri-
ority in all arbitration for the system-side bus. If this is not defined, the receive DMA has

higher priority.

= EMAC_BCONFIG_ADDR_ALIGNED works
EMAC_BCONFIG_FIXED_BURST to control address alignment of AHB bursts. When
both flags are specified, all bursts are aligned to the start address least significant bits.

tandem with

152

February 22, 2017

Ethernet Controller

If EMAC_BCONFIG_FIXED_BURST is not specified, the first burst is unaligned but
subsequent bursts are aligned to the address.

m EMAC_BCONFIG_ALT_DESCRIPTORS indicates that the DMA engine should use the
alternate descriptor format as defined in type tEMACDMADescriptor. If absent, the ba-
sic descriptor type is used. Alternate descriptors are required if using IEEE 1588-2008
advanced timestamping, VLAN or TCP/UDP/ICMP CRC insertion features. Note that, for
clarity, emac.h does not contain type definitions for the basic descriptor type. Please see
the part datasheet for information on basic descriptor structures.

m EMAC_BCONFIG_PRIORITY_FIXED indicates that a fixed priority scheme
should be employed when arbitrating between the transmit and receive DMA
for system-side bus access. In this case, the receive channel always has pri-
ority unless EMAC_BCONFIG_TX_PRIORITY is set, in which case the trans-
mit channel has priority. If EMAC_BCONFIG_PRIORITY_FIXED is not speci-
fied, a weighted round-robin arbitration scheme is used with the weighting de-
fined using EMAC_BCONFIG_PRIORITY_1_1, EMAC_BCONFIG_PRIORITY_2_1,
EMAC_BCONFIG_PRIORITY_3_1 or EMAC_BCONFIG_PRIORITY_4 1, and
EMAC_BCONFIG_TX_PRIORITY.

= EMAC_BCONFIG_FIXED_BURST indicates that fixed burst transfers should be used.

= EMAC_BCONFIG_MIXED_BURST indicates that the DMA engine should use mixed burst
types depending on the length of data to be transferred across the system bus.

The uiB2RxBurst and ui32TxBurst parameters indicate the maximum number of words that the
relevant DMA should transfer in a single transaction. Valid values are 1, 2, 4, 8, 16 and 32.
Any other value results in undefined behavior.

The ui32DescSkipSize parameter is used when the descriptor lists are using ring mode (where
descriptors are contiguous in memory with the last descriptor marked with the END_OF_RING
flag) rather than chained mode (where each descriptor includes a field that points to the
next descriptor in the list). In ring mode, the hardware uses the ui32DescSkipSize to skip
past any application-defined fields after the end of the hardware- defined descriptor fields.
The parameter value indicates the number of 32-bit words to skip after the last field of the
hardware-defined descriptor to get to the first field of the next descriptor. When using arrays of
either the tEMACDMADescriptor or tEMACAItDMADescriptor types defined for this driver,
ui32DescSkipSize must be set to 1 to skip the pvNext pointer added to the end of each of these
structures. Applications may modify these structure definitions to include their own application-
specific data and modify ui32DescSkipSize appropriately if desired.

Returns:
None.

10.2.4.14 EMACIntClear

Clears individual Ethernet MAC interrupt sources.

Prototype:
void
EMACIntClear (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the Ethernet MAC.

ui32intFlags is the bit mask of the interrupt sources to be cleared.

February 22, 2017 153

Ethernet Controller

Description:
This function disables the indicated Ethernet MAC interrupt sources.

The ui32IntFlags parameter is the logical OR of any of the following:

EMAC_INT_PHY indicates that the PHY has signaled a change of state. Software must
read and write the appropriate PHY registers to enable, disable and clear particular notifi-
cations.

EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer
of a packet.

EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled.

EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully
written from memory into the MAC transmit FIFO.

EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes
(of 10240 bytes in Jumbo Frame mode) was received.

EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped
state.

EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
EMACRxDMAPolIDemandy).

EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.
EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow
during transmission. The transmit process is suspended.

EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during recep-
tion.

EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This condition
occurs when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode)
and causes the transmit process to abort and enter the Stopped state.

EMAC_INT_TX _NO_BUFFER indicates that the host owns the next buffer in the DMA’s
transmit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmis-
sion is suspended and can be resumed by changing the descriptor ownership and calling
EMACTxDMAPollIDemand().

m EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.
m EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all

requested status has been updated in the descriptor.

Summary interrupt bits EMAC_INT_NORMAL_INT and EMAC_INT_ABNORMAL_INT are
cleared automatically by the driver if any of their constituent sources are cleared. Applications
do not need to explicitly clear these bits.

Returns:
None.

10.2.4.15 EMACIntDisable

Disables individual Ethernet MAC interrupt sources.

154

February 22, 2017

Ethernet Controller

Prototype:
void
EMACIntDisable (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the Ethernet MAC.

ui32IntFlags is the bit mask of the interrupt sources to be disabled.

Description:
This function disables the indicated Ethernet MAC interrupt sources.

The ui32IntFlags parameter is the logical OR of any of the following:

m EMAC_INT_PHY indicates that the PHY has signaled a change of state. Software must
read and write the appropriate PHY registers to enable and disable particular notifications.

m EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer
of a packet.

= EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled.

m EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully
written from memory into the MAC transmit FIFO.

m EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes
(of 10240 bytes in Jumbo Frame mode) was received.

m EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped
state.

m EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
EMACRxDMAPolIDemand().

m EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.

m EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow
during transmission. The transmit process is suspended.

m EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during recep-
tion.

m EMAC_INT_TX_ JABBER indicates that the transmit jabber timer expired. This condition
occurs when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode)
and causes the transmit process to abort and enter the Stopped state.

m EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
transmit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmis-
sion is suspended and can be resumed by changing the descriptor ownership and calling
EMACTxDMAPollIDemand().

m EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.

m EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all
requested status has been updated in the descriptor.

m EMAC_INT_TIMESTAMP indicates that an interrupt from the timestamp module has oc-
curred. This precise source of the interrupt can be determined by calling EMACTimes-
tamplIntStatus(), which also clears this bit.

Summary interrupt bits EMAC_INT_NORMAL_INT and EMAC_INT_ABNORMAL_INT are
disabled automatically by the driver if none of their constituent sources are enabled. Appli-
cations do not need to explicitly disable these bits.

February 22, 2017 155

Ethernet Controller

Note:

Timestamp-related interrupts from the IEEE 1588 module must be disabled independently by
using a call to EMACTimestampTargetintDisable().

Returns:
None.

10.2.4.16 EMACIntEnable

Enables individual Ethernet MAC interrupt sources.

Prototype:
void
EMACIntEnable (uint32_t ui32Base,

uint32_t ui32IntFlags)

Parameters:
ui32Base is the base address of the Ethernet MAC.

ui32IntFlags is the bit mask of the interrupt sources to be enabled.

Description:
This function enables the indicated Ethernet MAC interrupt sources. Only the sources that are
enabled can be reflected to the processor interrupt; disabled sources have no effect on the
processor.

The ui32IntFlags parameter is the logical OR of any of the following:

EMAC_INT_PHY indicates that the PHY has signaled a change of state. Software must
read and write the appropriate PHY registers to enable and disable particular notifications.
EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer
of a packet.

EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled.

EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully
written from memory into the MAC transmit FIFO.

EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes
(of 10240 bytes in Jumbo Frame mode) was received.

EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped
state.

EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
EMACRxDMAPolIDemandy).

EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.
EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow
during transmission. The transmit process is suspended.

EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during recep-
tion.

EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This condition
occurs when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode)
and causes the transmit process to abort and enter the Stopped state.

156

February 22, 2017

Ethernet Controller

m EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s
transmit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmis-
sion is suspended and can be resumed by changing the descriptor ownership and calling
EMACTxDMAPollIDemand().

m EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.

m EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all
requested status has been updated in the descriptor.

Summary interrupt bits EMAC_INT_NORMAL_INT and EMAC_INT_ABNORMAL_INT are en-
abled automatically by the driver if any of their constituent sources are enabled. Applications
do not need to explicitly enable these bits.

Note:
Timestamp-related interrupts from the IEEE 1588 module must be enabled independently by
using a call to EMACTimestampTargetintEnable().

Returns:
None.

10.2.4.17 EMACIntRegister

Registers an interrupt handler for an Ethernet interrupt.

Prototype:
void
EMACIntRegister (uint32_t ui32Base,
void (xpfnHandler) (void))

Parameters:
ui32Base is the base address of the controller.
pfnHandler is a pointer to the function to be called when the enabled Ethernet interrupts occur.

Description:
This function sets the handler to be called when the Ethernet interrupt occurs. This function
enables the global interrupt in the interrupt controller; specific Ethernet interrupts must be
enabled via EMACIntEnable(). It is the interrupt handler’s responsibility to clear the interrupt
source.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

10.2.4.18 EMACIntStatus

Gets the current Ethernet MAC interrupt status.

Prototype:
uint32_t
EMACIntStatus (uint32_t ui32Base,
bool bMasked)

February 22, 2017 157

Ethernet Controller

Parameters:

ui32Base is the base address of the Ethernet MAC.
bMasked is true to return the masked interrupt status or false to return the unmasked status.

Description:

This function returns the interrupt status for the Ethernet MAC. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:

Returns the current interrupt status as the logical OR of any of the following:

EMAC_INT_PHY indicates that the PHY interrupt has occurred. Software must read the rele-
vant PHY interrupt status register to determine the cause.

EMAC_INT_EARLY_RECEIVE indicates that the DMA engine has filled the first data buffer of
a packet.

EMAC_INT_BUS_ERROR indicates that a fatal bus error has occurred and that the DMA
engine has been disabled. The cause of the error can be determined by calling EMACDMAS-
tateGet().

EMAC_INT_EARLY_TRANSMIT indicates that a frame to be transmitted has been fully written
from memory into the MAC transmit FIFO.

EMAC_INT_RX_WATCHDOG indicates that a frame with length greater than 2048 bytes (of
10240 bytes in Jumbo Frame mode) was received.

m EMAC_INT_RX_STOPPED indicates that the receive process has entered the stopped state.
m EMAC_INT_RX_NO_BUFFER indicates that the host owns the next buffer in the DMA’s

receive descriptor list and the DMA cannot, therefore, acquire a buffer. The receive pro-
cess is suspended and can be resumed by changing the descriptor ownership and calling
EMACRxDMAPolIDemand().

EMAC_INT_RECEIVE indicates that reception of a frame has completed and all requested
status has been written to the appropriate DMA receive descriptor.
EMAC_INT_TX_UNDERFLOW indicates that the transmitter experienced an underflow during
transmission. The transmit process is suspended.

m EMAC_INT_RX_OVERFLOW indicates that an overflow was experienced during reception.

EMAC_INT_TX_JABBER indicates that the transmit jabber timer expired. This condition oc-
curs when the frame size exceeds 2048 bytes (or 10240 bytes in Jumbo Frame mode) and
causes the transmit process to abort and enter the Stopped state.

EMAC_INT_TX_NO_BUFFER indicates that the host owns the next buffer in the DMA'’s trans-
mit descriptor list and that the DMA cannot, therefore, acquire a buffer. Transmission is
suspended and can be resumed by changing the descriptor ownership and calling EMAC-
TxDMAPolIDemand().

m EMAC_INT_TX_STOPPED indicates that the transmit process has stopped.
m EMAC_INT_TRANSMIT indicates that transmission of a frame has completed and that all

requested status has been updated in the descriptor.

EMAC_INT_NORMAL_INT is a summary interrupt comprising the logical OR of the masked
state of EMAC_INT_TRANSMIT, EMAC_INT_RECEIVE, EMAC_INT_TX_NO_BUFFER and
EMAC_INT_EARLY_RECEIVE.

EMAC_INT_ABNORMAL_INT is a summary interrupt comprising
the logical OR of the masked state of EMAC_INT_TX_STOPPED,
EMAC_INT_TX_JABBER, EMAC_INT_RX_OVERFLOW, EMAC_INT_TX_UNDERFLOW,
EMAC_INT_RX_NO_BUFFER, EMAC_INT_RX_STOPPED, EMAC_INT_RX_WATCHDOG,
EMAC_INT_EARLY_TRANSMIT and EMAC_INT_BUS_ERROR.

158

February 22, 2017

Ethernet Controller

10.2.4.19 EMACIntUnregister

Unregisters an interrupt handler for an Ethernet interrupt.

Prototype:
void
EMACIntUnregister (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:

This function unregisters the interrupt handler. This function disables the global interrupt in the
interrupt controller so that the interrupt handler is no longer called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

10.2.4.20 EMACLPIConfig

Configures the LPI timers and control register.

Prototype:
void
EMACLPIConfig(uint32_t ui32Base,
bool bLPIConfig,
uintl6_t uil6LPILSTimer,
uintl6_t uil6LPITWTimer)

Parameters:
ui32Base is the base address of the controller.
bLPIConfig is state of LPI trasnmit automate bit.
ui16LPILSTimer is the value of LS timer in milli-seconds.
ui1l6LPITWTimer is the value of TW timer in micro-seconds.

Description:
This function is used to configure the LPI timer and control registers when the link is estab-
lished as EEE mode or when the link is lost. When the link is established as EEE, then
ui16LPILSTimer is programmed as the link status timer value and ui16LPITWTimer is pro-
grammed as the transmit wait timer value. The parameter bLPIConfig is used to decide if the
transmit path must be automated or should be under user control.

Returns:
None.

February 22, 2017 159

Ethernet Controller

10.2.4.21 EMACLPIEnter

Enables the transmit path for LPI mode entry.

Prototype:
void
EMACLPIEnter (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function is used to enable the transmit path in LPI mode when there is no more data to be

transmitted by the MAC controller.

Returns:
None.

10.2.4.22 EMACLPILinkClear

Clears the link status of the external PHY.

Prototype:
void
EMACLPILinkClear (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function is used to clear the link status of the external PHY when the link is lost due to a

disconnect or EEE mode link is not established.

Returns:
None.

10.2.4.23 EMACLPILinkSet

Sets the link status of the external PHY.

Prototype:
void
EMACLPILinkSet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function is used to set the link status of the external PHY when the link is established in

EEE mode.

Returns:
None.

160 February 22, 2017

Ethernet Controller

10.2.4.24 EMACLPIStatus

Returns the status of the LPI link.

Prototype:
uintle6_t
EMACLPIStatus (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to read the status of the transmit and receive path when the link is
configured in LPI mode.

Returns:
Returns the lower 16 bits of the LPI Control and Status register.

10.2.4.25 EMACNumAddrGet

Returns the number of MAC addresses supported by the Ethernet controller.

Prototype:
uint32_t
EMACNumAddrGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function may be used to determine the number of MAC addresses that the given controller
supports. MAC address slots may be used when performing perfect (rather than hash table)
filtering of packets.

Returns:
Returns the number of supported MAC addresses.

10.2.4.26 EMACPHYConfigSet

Selects the Ethernet PHY in use.

Prototype:
void
EMACPHYConfigSet (uint32_t ui32Base,
uint32_t ui32Confiqg)

Parameters:
ui32Base is the base address of the Ethernet controller.

ui32Config selects the PHY in use and, when using the internal PHY, allows various various
PHY parameters to be configured.

February 22, 2017 161

Ethernet Controller

Description:

This function must be called prior to EMACInit() and EMACConfigSet() to select the Ethernet
PHY to be used. If the internal PHY is selected, the function also allows configuration of
various PHY parameters. Note that the Ethernet MAC is reset during this function call because
parameters used by this function are latched by the hardware only on a MAC reset. The call
sequence to select and configure the PHY, therefore, must be as follows:

// Enable and reset the MAC.
SysCtlPeripheralEnable (SYSCTL_PERIPH_EMACO) ;
SysCtlPeripheralReset (SYSCTL_PERIPH_EMACO) ;
if (<using internal PHY>)
{
// Enable and reset the internal PHY.
SysCtlPeripheralEnable (SYSCTL_PERIPH_EPHYO) ;
SysCtlPeripheralReset (SYSCTL_PERIPH_EPHYO) ;
}

// Ensure the MAC is completed its reset.

while (!MAP_SysCtlPeripheralReady (SYSCTL_PERIPH_EMACO))
{

}

// Set the PHY type and configuration options.
EMACPHYConfigSet (EMACO_BASE, <config>);

// Initialize and configure the MAC.

EMACInit (EMACO_BASE, <system clock rate>, <bus config>,
<Rx burst size>, <Tx burst size>, <desc skip>);

EMACConfigSet (EMACO_BASE, <parameters>);

The uiB2Config parameter must specify one of the following values:

m EMAC_PHY_TYPE_INTERNAL selects the internal Ethernet PHY.

m EMAC_PHY_TYPE_EXTERNAL_MII selects an external PHY connected via the Ml inter-
face.

m EMAC_PHY_TYPE_EXTERNAL_RMII selects an external PHY connected via the RMII
interface.

If EMAC_PHY_TYPE_INTERNAL is selected, the following flags may be ORed into ui32Config
to control various PHY features and modes. These flags are ignored if an external PHY is
selected.

m EMAC_PHY_INT_NIB_TXERR_DET DIS disables odd nibble transmit error detection
(sets the default value of PHY register MR10, bit 1).

m EMAC_PHY_INT_RX_ER_DURING_IDLE enables receive error detection during idle
(sets the default value of PHY register MR10, bit 2).

m EMAC_PHY_INT_ISOLATE_MII_LLOSS ties the MIl outputs low if no link is established
in 100B-T and full duplex modes (sets the default value of PHY register MR10, bit 3).

m EMAC_PHY_INT_LINK_LOSS_ RECOVERY enables link loss recovery (sets the default
value of PHY register MR9, bit 7).

m EMAC_PHY_INT_TDRRUN enables execution of the TDR procedure after a link down
event (sets the default value of PHY register MR9, bit 8).

m EMAC_PHY_INT_LD ON_RX_ERR_COUNT enables link down if the receiver error count
reaches 32 within a 10-us interval (sets the default value of PHY register MR11 bit 3).

m EMAC_PHY_INT_LD ON_MTL3_ERR_COUNT enables link down if the MTL3 error
count reaches 20 in a 10 us-interval (sets the default value of PHY register MR11 bit
2).

162

February 22, 2017

Ethernet Controller

EMAC_PHY_INT_LD_ON_LOW_SNR enables link down if the low SNR threshold is
crossed 20 times in a 10 us-interval (sets the default value of PHY register MR11 bit 1).
EMAC_PHY_INT_LD ON_SIGNAL_ENERGY enables link down if energy detector indi-
cates Energy Loss (sets the default value of PHY register MR11 bit 0).
EMAC_PHY_INT_POLARITY_SWAP inverts the polarity on both TPTD and TPRD pairs
(sets the default value of PHY register MR11 bit 5).

EMAC_PHY_INT_MDI_SWAP swaps the MDI pairs putting receive on the TPTD pair and
transmit on TPRD (sets the default value of PHY register MR11 bit 6).
EMAC_PHY_INT_ROBUST_MDIX enables robust auto MDI-X resolution (sets the default
value of PHY register MR9 bit 5).

EMAC_PHY_INT_FAST_MDIX enables fast auto-MDI/MDIX resolution (sets the default
value of PHY register MR9 bit 6).

EMAC_PHY_INT_MDIX_EN enables auto-MDI/MDIX crossover (sets the default value of
PHY register MR9 bit 14).

EMAC_PHY_INT_FAST_RXDV_DETECT enables fast RXDV detection (set the default
value of PHY register MR9 bit 1).

EMAC_PHY_INT_FAST_L_UP_DETECT enables fast link-up time during parallel detec-
tion (sets the default value of PHY register MR10 bit 6)
EMAC_PHY_INT_EXT_FULL_DUPLEX forces full-duplex while working with a link part-
ner in forced 100B-TX (sets the default value of PHY register MR10 bit 5).
EMAC_PHY_INT_FAST_AN_80_50 35 enables fast auto-negotiation using break link,
link fail inhibit and wait timers set to 80, 50 and 35 respectively (sets the default value
of PHY register MR9 bits [4:2] to 3b100).

EMAC_PHY_INT_FAST_AN_120_75_50 enables fast auto-negotiation using break link,
link fail inhibit and wait timers set to 120, 75 and 50 respectively (sets the default value of
PHY register MR9 bits [4:2] to 3b101).

EMAC_PHY_INT_FAST_AN_140_150_100 enables fast auto-negotiation using break
link, link fail inhibit and wait timers set to 140, 150 and 100 respectively (sets the default
value of PHY register MR9 bits [4:2] to 3b110).
EMAC_PHY_FORCE_10B_T_HALF_DUPLEX disables auto-negotiation and forces op-
eration in 10Base-T, half duplex mode (sets the default value of PHY register MR9 bits
[13:11] to 3b000).

EMAC_PHY_FORCE_10B_T_FULL_DUPLEX disables auto-negotiation and forces oper-
ation in 10Base-T, full duplex mode (sets the default value of PHY register MR9 bits [13:11]
to 3b001).

EMAC_PHY_FORCE_100B_T_HALF_DUPLEX disables auto-negotiation and forces op-
eration in 100Base-T, half duplex mode (sets the default value of PHY register MR9 bits
[13:11] to 3b010).

EMAC_PHY_FORCE_100B_T_FULL_DUPLEX disables auto-negotiation and forces op-
eration in 100Base-T, full duplex mode (sets the default value of PHY register MR9 bits
[13:11] to 3b011).

EMAC_PHY_AN_10B_T_HALF_DUPLEX enables auto-negotiation and advertises
10Base-T, half duplex mode (sets the default value of PHY register MR9 bits [13:11] to
3b100).

EMAC_PHY_AN 10B_T FULL_DUPLEX enables auto-negotiation and advertises
10Base-T half or full duplex modes (sets the default value of PHY register MR9 bits [13:11]
to 3b101).

EMAC_PHY_AN_100B_T HALF_DUPLEX enables auto-negotiation and advertises
10Base-T half or full duplex, and 100Base-T half duplex modes (sets the default value
of PHY register MR9 bits [13:11] to 3b110).

February 22, 2017

163

Ethernet Controller

m EMAC_PHY_AN_100B_T_FULL_DUPLEX enables auto-negotiation and advertises
10Base-T half or full duplex, and 100Base-T half or full duplex modes (sets the default
value of PHY register MR9 bits [13:11] to 3b111).

m EMAC_PHY_INT_HOLD prevents the PHY from transmitting energy on the line.

As a side effect of this function, the Ethernet MAC is reset so any previous MAC configuration
is lost.

Returns:
None.

10.2.4.27 EMACPHYExtendedRead

Reads from an extended PHY register.

Prototype:
uintl6_t
EMACPHYExtendedRead (uint32_t ui32Base,
uint8_t ui8PhyAddr,
uintl6_t uil6RegAddr)

Parameters:
ui32Base is the base address of the controller.

ui8PhyAddr is the physical address of the PHY to access.
uil6RegAddr is the address of the PHY extended register to be accessed.

Description:
When using the internal PHY or when connected to an external PHY supporting extended
registers, this function returns the contents of the extended PHY register specified by
uil6RegAddr.

Returns:
Returns the 16-bit value read from the PHY.

10.2.4.28 EMACPHYExtendedWrite

Writes a value to an extended PHY register.

Prototype:
void
EMACPHYExtendedWrite (uint32_t ui32Base,
uint8_t ui8PhyAddr,
uintl6_t uiléRegAddr,
uintl6_t uiléValue)

Parameters:
ui32Base is the base address of the controller.

ui8PhyAddr is the physical address of the PHY to access.
uil6RegAddr is the address of the PHY extended register to be accessed.
ui16Value is the value to write to the register.

164 February 22, 2017

Ethernet Controller

Description:
When using the internal PHY or when connected to an external PHY supporting extended
registers, this function allows a value to be written to the extended PHY register specified by
ui16RegAddr.

Returns:
None.

10.2.4.29 EMACPHYMMDRead

Reads from an extended PHY register in MMD address space.

Prototype:
uintlé_t
EMACPHYMMDRead (uint32_t ui32Base,
uint8_t uwi8PhyAddr,
uintl6_t uil6RegAddr)

Parameters:
ui32Base is the base address of the controller.

ui8PhyAddr is the physical address of the PHY to access.
uil6RegAddr is the address of the PHY extended register to be accessed.

Description:
When connected to an external PHY supporting extended registers, this this function returns
the contents of the MMD register specified by ui16RegAddr.

Returns:
Returns the 16-bit value read from the PHY.

10.2.4.30 EMACPHYMMDWrite

Writes a value to an extended PHY register in MMD address space.

Prototype:
void
EMACPHYMMDWrite (uint32_t ui32Base,
uint8_t ui8PhyAddr,
uintl6_t uil6RegAddr,
uintl6_t uiloéData)

Parameters:
ui32Base is the base address of the controller.

ui8PhyAddr is the physical address of the PHY to access.
uil6RegAddr is the address of the PHY extended register to be accessed.
ui16Value is the value to write to the register.

Description:
When uhen connected to an external PHY supporting extended registers in MMD address
space, this function allows a value to be written to the MMD register specified by ui16RegAdar.

February 22, 2017 165

Ethernet Controller

Returns:
None.

10.2.4.31 EMACPHY PowerOff

Powers off the Ethernet PHY.

Prototype:

void
EMACPHYPowerOff (uint32_t ui32Base,
uint8_t ui8PhyAddr)

Parameters:
ui32Base is the base address of the controller.

ui8PhyAddr is the physical address of the PHY to power down.

Description:
This function powers off the Ethernet PHY, reducing the current consumption of the device.
While in the powered-off state, the Ethernet controller is unable to connect to Ethernet.

Returns:
None.

10.2.4.32 EMACPHYPowerOn

Powers on the Ethernet PHY.

Prototype:

void
EMACPHYPowerOn (uint32_t ui32Base,
uint8_t ui8PhyAddr)

Parameters:
ui32Base is the base address of the controller.

ui8PhyAddr is the physical address of the PHY to power up.

Description:
This function powers on the Ethernet PHY, enabling it return to normal operation. By default,
the PHY is powered on, so this function is only called if EMACPHYPowerOff() has previously

been called.

Returns:
None.

10.2.4.33 EMACPHYRead

Reads from a PHY register.

166 February 22, 2017

Ethernet Controller

Prototype:
uintl6_t
EMACPHYRead (uint32_t ui32Base,
uint8_t ui8PhyAddr,
uint8_t ui8RegAddr)

Parameters:
ui32Base is the base address of the controller.

ui8PhyAddr is the physical address of the PHY to access.
uiBRegAddr is the address of the PHY register to be accessed.

Description:
This function returns the contents of the PHY register specified by ui8RegAddr.

Returns:
Returns the 16-bit value read from the PHY.

10.2.4.34 EMACPHYWrite

Writes to the PHY register.

Prototype:
void
EMACPHYWrite (uint32_t ui32Base,
uint8_t ui8PhyAddr,
uint8_t ui8RegAddr,
uintl6_t uiloeData)

Parameters:
ui32Base is the base address of the controller.

ui8PhyAddr is the physical address of the PHY to access.
uiBRegAddr is the address of the PHY register to be accessed.
ui1l6Data is the data to be written to the PHY register.

Description:
This function writes the ui16Data value to the PHY register specified by ui8RegAdadr.

Returns:
None.

10.2.4.35 EMACPowerManagementControlGet

Queries the current Ethernet MAC remote wake-up configuration.

Prototype:
uint32_t
EMACPowerManagementControlGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

February 22, 2017 167

Ethernet Controller

Description:
This function allows the MAC’s remote wake-up settings to be queried. These settings deter-
mine which types of frame should trigger a remote wake-up event

Returns:
Returns a logical OR of the following flags:

m EMAC_PMT_GLOBAL_UNICAST_ENABLE indicates that the MAC wakes up when any uni-
cast frame matching the MAC destination address filter is received.

m EMAC_PMT_WAKEUP_PACKET_ENABLE indicates that the MAC wakes up when any re-
ceived frame matches the remote wake-up filter configured via a call to EMACRemoteWake-
UpFramerFilterSet().

m EMAC_PMT_MAGIC_PACKET_ENABLE indicates that the MAC wakes up when a standard
Wake-on-LAN "magic packet" is received. The magic packet contains 6 bytes of OxFF followed
immediately by 16 repetitions of the destination MAC address.

m EMAC_PMT_POWER_DOWN indicates that the MAC is currently in power-down mode and
is waiting for an incoming frame matching the remote wake-up frames as described by other
returned flags and via the remote wake-up filter.

10.2.4.36 EMACPowerManagementControlSet

Sets the Ethernet MAC remote wake-up configuration.

Prototype:

void
EMACPowerManagementControlSet (uint32_t ui32Base,
uint32_t ui32Flags)

Parameters:
ui32Base is the base address of the controller.

ui32Flags defines which types of frame should trigger a remote wake-up and allows the MAC
to be put into power-down mode.

Description:
This function allows the MAC’s remote wake-up features to be configured, determining which
types of frame should trigger a wake-up event and allowing an application to place the MAC
in power-down mode. In this mode, the MAC ignores all received frames until one matching
a configured remote wake-up frame is received, at which point the MAC automatically exits
power-down mode and continues to receive frames.

The ui32Flags parameter is a logical OR of the following flags:

m EMAC_PMT_GLOBAL_UNICAST_ENABLE instructs the MAC to wake up when any uni-
cast frame matching the MAC destination address filter is received.

m EMAC_PMT_WAKEUP_PACKET_ENABLE instructs the MAC to wake up when any re-
ceived frame matches the remote wake-up filter configured via a call to EMACRemote-
WakeUpFrameFilterSety().

m EMAC_PMT_MAGIC_PACKET_ENABLE instructs the MAC to wake up when a standard
Wake-on-LAN "magic packet" is received. The magic packet contains 6 bytes of OxFF
followed immediately by 16 repetitions of the destination MAC address.

168

February 22, 2017

Ethernet Controller

m EMAC_PMT_POWER_DOWN instructs the MAC to enter power-down mode and wait for
an incoming frame matching the remote wake-up frames as described by other flags and
via the remote wake-up filter. This flag should only set set if at least one other flag is
specified to configure a wake-up frame type.

When the MAC is in power-down mode, software may exit the mode by calling this function with
the EMAC_PMT_POWER_DOWN flag absent from ui32Flags. If a configured wake-up frame
is received while in power-down mode, the EMAC_INT_POWER_MGMNT interrupt is signaled
and may be cleared by reading the status using EMACPowerManagementStatusGet().

Note:
While it is possible to gate the clock to the MAC while it is in power-down mode, doing so pre-
vents the reading of the registers required to determine the interrupt status and also prevents
power-down mode from exiting via another call to this function.

Returns:
None.

10.2.4.37 EMACPowerManagementStatusGet

Queries the current Ethernet MAC remote wake-up status.

Prototype:
uint32_t
EMACPowerManagementStatusGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns information on the remote wake-up state of the Ethernet MAC. If the MAC
has been woken up since the last call, the returned value indicates the type of received frame
that caused the MAC to exit power-down state.

Returns:
Returns a logical OR of the following flags:

m EMAC_PMT_POWER_DOWN indicates that the MAC is currently in power-down mode.

m EMAC_PMT_WAKEUP_PACKET_RECEIVED indicates that the MAC exited power-down
mode due to a remote wake-up frame being received. This function call clears this flag.

m EMAC_PMT_MAGIC_PACKET_RECEIVED indicates that the MAC exited power-down mode
due to a wake-on-LAN magic packet being received. This function call clears this flag.

10.2.4.38 EMACRemoteWakeUpFramekFilterGet

Returns the current remote wake-up frame filter configuration.

Prototype:
void
EMACRemoteWakeUpFrameFilterGet (uint32_t ui32Base,
tEMACWakeUpFrameFilter xpFilter)

February 22, 2017 169

Ethernet Controller

Parameters:
ui32Base is the base address of the controller.

pFilter points to the structure that is written with the current remote wake-up frame filter infor-

mation.

Description:
This function may be used to read the current wake-up frame filter settings. The data returned
by the function describes wake-up frames in terms of a CRC calculated on up to 31 payload
bytes in the frame. The actual bytes used in the CRC calculation are defined by means of a bit
mask where a “1” indicates that a byte in the frame should contribute to the CRC calculation
and a “0” indicates that the byte should be skipped, and an offset from the start of the frame to
the payload byte that represents the first byte in the 31-byte CRC-checked sequence.

The pFilter parameter points to storage that is written with a structure containing the infor-
mation defining the frame filters. This structure contains the following fields, each of which is
replicated 4 times, once for each possible wake-up frame:

pui32ByteMask defines whether a given byte in the chosen 31-byte sequence within the
frame should contribute to the CRC calculation or not. A 1 indicates that the byte should
contribute to the calculation, a 0 causes the byte to be skipped.

pui8Command contains flags defining whether this filter is enabled and, if so,
whether it refers to unicast or multicast packets. Valid values are one of
EMAC_RWU_FILTER_MULTICAST or EMAC_RWU_FILTER_UNICAST ORed with one
of EMAC_RWU_FILTER_ENABLE or EMAC_RWU_FILTER_DISABLE.

pui8Offset defines the zero-based index of the byte within the frame at which CRC check-
ing defined by pui32ByteMask begins. Alternatively, this value can be thought of as the
number of bytes in the frame that the MAC skips before accumulating the CRC based on
the pattern in pui32ByteMask.

pui16CRC provides the value of the calculated CRC for a valid remote wake-up frame. If
the incoming frame is processed according to the filter values provided and the final CRC
calculation equals this value, the frame is considered to be a valid remote wake-up frame.

Note that this filter uses CRC16 rather than CRC32 as used in frame checksums.

Returns:
None.

10.2.4.39 EMACRemoteWakeUpFrameFilterSet

Sets values defining up to four frames used to trigger a remote wake-up.

Prototype:
void
EMACRemoteWakeUpFrameFilterSet (uint32_t ui32Base,

const tEMACWakeUpFrameFilter xpFilter)

Parameters:
ui32Base is the base address of the controller.

pFilter points to the structure containing remote wake-up frame filter information.

Description:
This function may be used to define up to four different frames that are considered by the
Ethernet MAC to be remote wake-up signals. The data passed to the function describes a

170

February 22, 2017

Ethernet Controller

wake-up frame in terms of a CRC calculated on up to 31 payload bytes in the frame. The
actual bytes used in the CRC calculation are defined by means of a bit mask where a “1”
indicates that a byte in the frame should contribute to the CRC calculation and a “0” indicates
that the byte should be skipped, as well as an offset from the start of the frame to the payload
byte that represents the first byte in the 31-byte CRC-checked sequence.

The pFilter parameter points to a structure containing the information necessary to set up the
filters. This structure contains the following fields, each of which is replicated 4 times, once for
each possible wake-up frame:

= pui32ByteMask defines whether a given byte in the chosen 31-byte sequence within the
frame should contribute to the CRC calculation or not. A 1 indicates that the byte should
contribute to the calculation, a 0 causes the byte to be skipped.

m pui8Command contains flags defining whether this filter is enabled and, if so,
whether it refers to unicast or multicast packets. Valid values are one of
EMAC_RWU_FILTER_MULTICAST or EMAC_RWU_FILTER_UNICAST ORed with one
of EMAC_RWU_FILTER_ENABLE or EMAC_RWU_FILTER_DISABLE.

m pui8Offset defines the zero-based index of the byte within the frame at which CRC check-
ing defined by pui32ByteMask begins. Alternatively, this value can be thought of as the
number of bytes in the frame that the MAC skips before accumulating the CRC based on
the pattern in pui32ByteMask.

m pui16CRC provides the value of the calculated CRC for a valid remote wake-up frame. If
the incoming frame is processed according to the filter values provided and the final CRC
calculation equals this value, the frame is considered to be a valid remote wake-up frame.

Note that this filter uses CRC16 rather than CRC32 as used in frame checksums. The required
CRC uses a direct algorithm with polynomial 0x8005, initial seed value OxFFFF, no final XOR
and reversed data order. CRCs for use in this function may be determined using the online
calculator found at http://www.zorc.breitbandkatze.de/crc.html.

Returns:
None.

10.2.4.40 EMACReset

Resets the Ethernet MAC.
Prototype:

void
EMACReset (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function performs a reset of the Ethernet MAC by resetting all logic and returning all
registers to their default values. The function returns only after the hardware indicates that the
reset has completed.

Note:
To ensure that the reset completes, the selected PHY clock must be enabled when this function
is called. If the PHY clock is absent, this function does not return.

February 22, 2017 171

http://www.zorc.breitbandkatze.de/crc.html.

Ethernet Controller

Returns:
None.

10.2.4.41 EMACRxDisable

Disables the Ethernet controller receiver.

Prototype:
void
EMACRxDisable (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
When terminating operations on the Ethernet interface, this function should be called. This

function disables the receiver.

Returns:
None.

10.2.4.42 EMACRxDMACurrentBufferGet

Returns the current DMA receive buffer pointer.

Prototype:
uint8_t =«
EMACRxDMACurrentBufferGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be called to determine which buffer the receive DMA engine is currently

writing to.

Returns:
Returns the receive buffer address currently being written by the DMA engine.

10.2.4.43 EMACRXxDMACurrentDescriptorGet

Returns the current DMA receive descriptor pointer.

Prototype:
tEMACDMADescriptor =
EMACRxDMACurrentDescriptorGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

172 February 22, 2017

Ethernet Controller

Description:
This function returns a pointer to the current Ethernet receive descriptor read by the DMA.

Returns:
Returns a pointer to the start of the current receive DMA descriptor.

10.2.4.44 EMACRxDMADescriptorListGet

Returns a pointer to the start of the DMA receive descriptor list.

Prototype:
tEMACDMADescriptor =
EMACRxDMADescriptorListGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the head of the Ethernet MAC’s receive DMA descriptor list.
This value corresponds to the pointer originally set using a call to EMACRxDMADescriptorList-
Set().

Returns:
Returns a pointer to the start of the DMA receive descriptor list.

10.2.4.45 EMACRxDMADescriptorListSet

Sets the DMA receive descriptor list pointer.

Prototype:
void
EMACRxDMADescriptorListSet (uint32_t ui32Base,
tEMACDMADescriptor xpDescriptor)

Parameters:
ui32Base is the base address of the controller.
pDescriptor points to the first DMA descriptor in the list to be passed to the receive DMA
engine.

Description:
This function sets the Ethernet MAC’s receive DMA descriptor list pointer. The pDescriptor
pointer must point to one or more descriptor structures.

When multiple descriptors are provided, they can be either chained or unchained.
Chained descriptors are indicated by setting the DESO0_TX CTRL_CHAINED or
DES1_RX_CTRL_CHAINED bit in the relevant word of the transmit or receive descrip-
tor. If this bit is clear, unchained descriptors are assumed.

Chained descriptors use a link pointer in each descriptor to point to the next descriptor in the
chain.

Unchained descriptors are assumed to be contiguous in memory with a consistent offset be-
tween the start of one descriptor and the next. If unchained descriptors are used, the pvLink

February 22, 2017 173

Ethernet Controller

field in the descriptor becomes available to store a second buffer pointer, allowing each de-
scriptor to point to two buffers rather than one. In this case, the ui32DescSkipSize parameter
to EMACInit() must previously have been set to the number of words between the end of one
descriptor and the start of the next. This value must be 0 in cases where a packed array of
tEMACDMADescriptor structures is used. If the application wishes to add new state fields to
the end of the descriptor structure, the skip size should be set to accommodate the newly sized
structure.

Applications are responsible for initializing all descriptor fields appropriately before passing the
descriptor list to the hardware.

Returns:
None.

10.2.4.46 EMACRxDMAPolIDemand

Orders the MAC DMA controller to attempt to acquire the next receive descriptor.

Prototype:
void
EMACRxDMAPollDemand (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function must be called to restart the receiver if it has been suspended due to the current
receive DMA descriptor being owned by the host. Once the application reads any data from the
descriptor and marks it as being owned by the MAC DMA, this function causes the hardware
to attempt to acquire the descriptor before writing the next received packet into its buffer(s).

Returns:
None.

10.2.4.47 EMACRxEnable

Enables the Ethernet controller receiver.

Prototype:
void
EMACRxEnable (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
When starting operations on the Ethernet interface, this function should be called to enable the
receiver after all configuration has been completed.

Returns:
None.

174

February 22, 2017

Ethernet Controller

10.2.4.48 EMACRxWatchdogTimerSet

Sets the receive interrupt watchdog timer period.

Prototype:

void
EMACRxWatchdogTimerSet (uint32_t ui32Base,
uint8_t ui8Timeout)

Parameters:
ui32Base is the base address of the Ethernet controller.

ui8Timeout is the desired timeout expressed as a number of 256 system clock periods.

Description:
This function configures the receive interrupt watchdog timer. The uiTimeout parame-
ter specifies the number of 256 system clock periods that elapse before the timer ex-
pires. In cases where the DMA has transferred a frame using a descriptor that has
DES1_RX_CTRL_DISABLE_INT set, the watchdog causes a receive interrupt to be generated
when it times out. The watchdog timer is reset whenever a packet is transferred to memory
using a DMA descriptor that does not disable the receive interrupt.

To disable the receive interrupt watchdog function, set ui8Timeout to 0.

Returns:
None.

10.2.4.49 EMACStatusGet

Returns the current Ethernet MAC status.

Prototype:
uint32_t
EMACStatusGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the Ethernet controller.

Description:
This function returns information on the current status of all the main modules in the MAC
transmit and receive data paths.

Returns:
Returns the current MAC status as a logical OR of any of the following flags:

= EMAC_STATUS_TX_NOT_EMPTY

= EMAC_STATUS_TX_WRITING_FIFO
= EMAC_STATUS_TX_PAUSED

= EMAC_STATUS_MAC_NOT _IDLE

= EMAC_STATUS_RWC_ACTIVE

= EMAC_STATUS_RPE_ACTIVE

February 22, 2017 175

Ethernet Controller

The transmit frame controller status can be extracted from the returned value by ANDing with
EMAC_STATUS_TFC_STATE_MASK and is one of the following:

EMAC_STATUS_TFC_STATE_IDLE

EMAC_STATUS_TFC_STATE_WAITING
EMAC_STATUS_TFC_STATE_PAUSING
EMAC_STATUS_TFC_STATE_WRITING

The transmit FIFO read controller status can be extracted from the returned value by ANDing with
EMAC_STATUS_TRC_STATE_MASK and is one of the following:

EMAC_STATUS_TRC_STATE_IDLE
EMAC_STATUS_TRC_STATE_READING
EMAC_STATUS_TRC_STATE_WAITING
EMAC_STATUS_TRC_STATE_STATUS

The current receive FIFO levels can be extracted from the returned value by ANDing with
EMAC_STATUS_RX_FIFO_LEVEL_MASK and is one of the following:

m EMAC_STATUS_RX_FIFO_EMPTY indicating that the FIFO is empty.

m EMAC_STATUS_RX_FIFO_BELOW indicating that the FIFO fill level is below the flow-control
deactivate threshold.

m EMAC_STATUS_RX_FIFO_ABOVE indicating that the FIFO fill level is above the flow-control
activate threshold.

m EMAC_STATUS_RX_FIFO_FULL indicating that the FIFO is full.

The current receive FIFO state can be extracted from the returned value by ANDing with
EMAC_STATUS RX_FIFO_STATE_MASK and is one of the following:

= EMAC_STATUS_RX_FIFO_IDLE
EMAC_STATUS_RX_FIFO_READING
EMAC_STATUS_RX_FIFO_STATUS
EMAC_STATUS_RX_FIFO_FLUSHING

10.2.4.50 EMACTimestampAddendSet

Adjusts the system time update rate when using the fine correction method.

Prototype:
void
EMACTimestampAddendSet (uint32_t ui32Base,
uint32_t ui32Increment)

Parameters:
ui32Base is the base address of the controller.
ui32increment is the number to add to the accumulator register on each tick of the 25-MHz
main oscillator.

176

February 22, 2017

Ethernet Controller

10.2.4.51

Description:

This function is used to control the rate of update of the system time when in fine update mode.
Fine correction mode is selected if EMAC_TS_UPDATE_FINE is supplied in the ui32Config
parameter passed to a previous call to EMACTimestampConfigSet(). Fine update mode is
typically used when synchronizing the local clock to the IEEE 1588 master clock. The sub-
second counter is incremented by the number passed to EMACTimestampConfigSet() in the
uiB2SubSecondinc parameter each time a 32-bit accumulator register generates a carry. The
accumulator register is incremented by the "addend" value on each main oscillator tick, and
this addend value is modified to allow fine control over the rate of change of the timestamp
counter. The addend value is calculated using the ratio of the main oscillator clock rate and
the desired IEEE 1588 clock rate and the ui32SubSecondinc value is set to correspond to the
desired IEEE 1588 clock rate.

As an example, using digital rollover mode and a 25-MHz main oscillator clock with a desired
IEEE 1588 clock accuracy of 12.5 MHz, and having made a previous call to EMACTimes-
tampConfigSet() with ui32SubSecondinc set to the 12.5-MHz clock period of 80 ns, the initial
uiB2Increment value would be set to 0x80000000 to generate a carry on every second main
oscillator tick. Because the system time updates each time the accumulator overflows, small
changes in the ui32Increment value can be used to very finely control the system time rate.

Returns:

None.

See also:

EMACTimestampConfigSet()

EMACTimestampConfigGet

Returns the current IEEE 1588 timestamping configuration.

Prototype:

uint32_t
EMACTimestampConfigGet (uint32_t ui32Base,
uint32_t xpui32SubSecondInc)

Parameters:

ui32Base is the base address of the controller.

pui32SubSecondinc points to storage that is written with the current subsecond increment
value for the IEEE 1588 clock.

Description:

This function may be used to retreive the current MAC timestamping configuration.

See also:

EMACTimestampConfigSet()

Returns:

Returns the current timestamping configuration as a logical OR of the following flags:

m EMAC_TS_PTP_VERSION_2 indicates that the MAC is processing PTP version 2 messages.
If this flag is absent, PTP version 1 messages are expected.

February 22, 2017 177

Ethernet Controller

EMAC_TS DIGITAL_ROLLOVER causes the clock’s subsecond value to roll over at
0x3BA9CIOFF (999999999 decimal). In this mode, it can be considered as a nanosecond
counter with each digit representing 1 ns. If this flag is absent, the subsecond value rolls over
at Ox7FFFFFFF, effectively counting increments of 0.465 ns.

EMAC_TS_ MAC_FILTER_ENABLE indicates that incoming PTP messages are filtered using
any of the configured MAC addresses. Messages with a destination address programmed
into the MAC address filter are passed, others are discarded. If this flag is absent, the MAC
address is ignored.

EMAC_TS_UPDATE_FINE implements the fine update method that causes the IEEE 1588
clock to advance by the the value returned in the xpui32SubSecondinc parameter each time
a carry is generated from the addend accumulator register. If this flag is absent, the coarse
update method is in use and the clock is advanced by the xpui32SubSecondinc value on each
system clock tick.

EMAC_TS_SYNC_ONLY indicates that timestamps are only generated for SYNC messages.

EMAC_TS_ DELAYREQ_ONLY indicates that timestamps are only generated for Delay_Req
messages.

EMAC_TS_ALL indicates that timestamps are generated for all IEEE 1588 messages.
EMAC_TS_SYNC_PDREQ_PDRESP timestamps only SYNC, Pdelay_Req and Pdelay_Resp
messages.

EMAC_TS_DREQ_PDREQ_PDRESP indicates that timestamps are only generated for De-
lay_Req, Pdelay_Req and Pdelay_Resp messages.

EMAC_TS_SYNC_DELAYREQ indicates that timestamps are only generated for Delay_Req
messages.

EMAC_TS_PDREQ_PDRESP indicates that timestamps are only generated for Pdelay_Req
and Pdelay_Resp messages.

EMAC_TS_PROCESS _IPV4_UDP indicates that PTP packets encapsulated in UDP over
IPv4 packets are being processed. If absent, the MAC ignores these frames.
EMAC_TS_PROCESS_IPV6_UDP indicates that PTP packets encapsulated in UDP over
IPv6 packets are being processed. If absent, the MAC ignores these frames.

EMAC_TS PROCESS_ETHERNET indicates that PTP packets encapsulated directly in Eth-
ernet frames are being processd. If absent, the MAC ignores these frames.

EMAC_TS_ALL_RX_FRAMES indicates that timestamping is enabled for all frames received
by the MAC, regardless of type.

If EMAC_TS_ALL_RX_FRAMES and none of the options specifying subsets of PTP packets to
timestamp are set, the MAC is configured to timestamp SYNC, Follow_Up, Delay_Req and De-
lay_Resp messages only.

10.2.4.52 EMACTimestampConfigSet

Configures the Ethernet MAC’s IEEE 1588 timestamping options.

Prototype:

void

EMACTimestampConfigSet (uint32_t ui32Base,
uint32_t ui32Config,
uint32_t ui32SubSecondInc)

178

February 22, 2017

Ethernet Controller

Parameters:

ui32Base is the base address of the controller.
ui32Config contains flags selecting particular configuration options.

ui32SubSecondinc is the number that the IEEE 1588 subsecond clock should increment on
each tick.

Description:

This function is used to configure the operation of the Ethernet MAC'’s internal timestamping
clock. This clock is used to timestamp incoming and outgoing packets and as an accurate
system time reference when IEEE 1588 Precision Time Protocol is in use.

The uiB2Config parameter contains a collection of flags selecting the desired options. Valid
flags are:

One of the following to determine whether IEEE 1588 version 1 or version 2 packet format is to
be processed:

= EMAC_TS_PTP_VERSION_2
= EMAC_TS_PTP_VERSION_1

One of the following to determine how the IEEE 1588 clock’s subsecond value should be inter-
preted and handled:

m EMAC_TS_DIGITAL_ROLLOVER causes the clock’s subsecond value to roll over at
0x3BA9COFF (999999999 decimal). In this mode, it can be considered as a nanosec-
ond counter with each digit representing 1 ns.

m EMAC TS BINARY_ROLLOVER causes the clock’s subsecond value to roll over at
0x7FFFFFFF. In this mode, the subsecond value counts 0.465 ns periods.

One of the following to enable or disable MAC address filtering. When enabled, PTP frames are
filtered unless the destination MAC address matches any of the currently programmed MAC
addresses.

= EMAC_TS_MAC_FILTER_ENABLE
= EMAC_TS_MAC_FILTER_DISABLE

One of the following to determine how the clock is updated:

m EMAC_TS_UPDATE_COARSE causes the IEEE 1588 clock to advance by the value sup-
plied in the ui32SubSecondinc parameter on each main oscillator clock cycle.

m EMAC_TS_UPDATE_FINE selects the fine update method which causes the IEEE 1588
clock to advance by the the value supplied in the ui32SubSecondinc parameter each time
a carry is generated from the addend accumulator register.

One of the following to determine which IEEE 1588 messages are timestamped:

m EMAC_TS_SYNC_FOLLOW_DREQ_DRESP timestamps SYNC, Follow_Up, Delay_Req
and Delay_Resp messages.

EMAC_TS_SYNC_ONLY timestamps only SYNC messages.
EMAC_TS_DELAYREQ_ONLY timestamps only Delay Req messages.
EMAC_TS_ALL timestamps all IEEE 1588 messages.

EMAC_TS_SYNC_PDREQ_PDRESP timestamps only SYNC, Pdelay Req and Pde-
lay_Resp messages.

m EMAC_TS_DREQ_PDREQ_PDRESP timestamps only Delay Req, Pdelay Req and
Pdelay_Resp messages.

February 22, 2017

179

Ethernet Controller

m EMAC_TS_SYNC_DELAYREQ timestamps only Delay_Req messages.

m EMAC_TS_PDREQ_PDRESP timestamps only Pdelay Req and Pdelay Resp mes-
sages.

Optional, additional flags are:

m EMAC_TS_PROCESS_IPV4_UDP processes PTP packets encapsulated in UDP over
IPv4 packets. If absent, the MAC ignores these frames.

m EMAC_TS_PROCESS_IPV6_UDP processes PTP packets encapsulated in UDP over
IPv6 packets. If absent, the MAC ignores these frames.

m EMAC_TS_PROCESS_ETHERNET processes PTP packets encapsulated directly in Eth-
ernet frames. If absent, the MAC ignores these frames.

m EMAC_TS_ALL_RX_FRAMES enables timestamping for all frames received by the MAC,
regardless of type.

The wiB2SubSecondinc controls the rate at which the timestamp clock’'s subsecond
count increments. lts meaning depends on which of EMAC_TS_DIGITAL_ROLLOVER
or EMAC_TS_BINARY_ROLLOVER and EMAC_TS_UPDATE_FINE or
EMAC_TS_UPDATE_COARSE were included in ui32Config.

The timestamp second counter is incremented each time the subsecond counter rolls over.
In digital rollover mode, the subsecond counter acts as a simple 31-bit counter, rolling over
to 0 after reaching Ox7FFFFFFF. In this case, each Isb of the subsecond counter represents
0.465 ns (assuming the definition of 1 second resolution for the seconds counter). When binary
rollover mode is selected, the subsecond counter acts as a nanosecond counter and rolls over
to 0 after reaching 999, 999, 999 making each Isb represent 1 nanosecond.

In coarse update mode, the timestamp subsecond counter is incremented by
uiB2SubSecondinc on each main oscillator clock tick. Setting ui32SubSecondinc to the
main oscillator clock period in either 1 ns or 0.465 ns units ensures that the time stamp, read
as seconds and subseconds, increments at the same rate as the main oscillator clock. For
example, if the main oscillator is 25 MHz, ui32SubSecondinc is set to 40 if digital rollover
mode is selected or (40 / 0.465) = 86 in binary rollover mode.

In fine update mode, the subsecond increment value must be set according to the desired
accuracy of the recovered IEEE 1588 clock which must be lower than the system clock rate.
Fine update mode is typically used when synchronizing the local clock to the IEEE 1588 master
clock. The subsecond counter is incremented by ui32SubSecondinc counts each time a 32-bit
accumulator register generates a carry. The accumulator register is incremented by the addend
value on each main oscillator tick and this addend value is modified to allow fine control over
the rate of change of the timestamp counter. The addend value is calculated using the ratio of
the main oscillator clock rate and the desired IEEE 1588 clock rate and the ui32SubSecondinc
value is set to correspond to the desired IEEE 1588 clock rate. As an example, using digital
rollover mode and a 25-MHz main oscillator clock with a desired IEEE 1588 clock accuracy of
12.5 MHz, we would set ui32SubSecondinc to the 12.5-MHz clock period of 80 ns and set the
initial addend value to 0x80000000 to generate a carry on every second system clock.

See also:

EMACTimestampAddendSet()

Returns:

None.

180

February 22, 2017

Ethernet Controller

10.2.4.53 EMACTimestampDisable

Disables packet timestamping and stops the system clock.

Prototype:
void
EMACTimestampDisable (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function is used to stop the system clock used to timestamp Ethernet frames and to disable
timestamping.

Returns:
None.

10.2.4.54 EMACTimestampEnable

Enables packet timestamping and starts the system clock running.

Prototype:
void
EMACTimestampEnable (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function is used to enable the system clock used to timestamp Ethernet frames and to
enable that timestamping.

Returns:
None.

10.2.4.55 EMACTimestampIntStatus

Reads the status of the Ethernet system time interrupt.

Prototype:
uint32_t
EMACTimestampIntStatus (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
When an Ethernet interrupt occurs and EMAC_INT_TIMESTAMP is reported bu EMACIntSta-
tus(), this function must be called to read and clear the timer interrupt status.

February 22, 2017 181

Ethernet Controller

Returns:
The return value is the logical OR of the values EMAC_TS_INT_TS_SEC_OVERFLOW and
EMAC_TS_INT_TARGET_REACHED.

m EMAC_TS_INT_TS_SEC_OVERFLOW indicates that the second counter in the hardware
timer has rolled over.

m EMAC_TS_INT_TARGET_REACHED indicates that the system time incremented past the
value set in an earlier call to EMACTimestampTargetSet(). When this occurs, a new target
time may be set and the interrupt re-enabled using calls to EMACTimestampTargetSet() and
EMACTimestampTargetintEnable().

10.2.4.56 EMACTimestampPPSCommand

Sends a command to control the PPS output from the Ethernet MAC.

Prototype:
void
EMACTimestampPPSCommand (uint32_t ui32Base,
uint8_t ui8Cmd)

Parameters:
ui32Base is the base address of the controller.

ui8Cmd identifies the command to be sent.

Description:
This function may be used to send a command to the MAC PPS (Pulse Per Second) controller
when it is operating in command mode. Command mode is selected by calling EMACTimes-
tampPPSCommandModeSet(). Valid commands are as follow:

= EMAC_PPS_COMMAND_NONE indicates no command.

m EMAC_PPS_COMMAND_START_SINGLE indicates that a single high pulse should be
generated when the system time reaches the current target time.

m EMAC_PPS_COMMAND_START_TRAIN indicates that a train of pulses should be
started when the system time reaches the current target time.

= EMAC_PPS_COMMAND_CANCEL_START cancels any pending start command if the
system time has not yet reached the programmed target time.

= EMAC_PPS_COMMAND_STOP_AT_TIME indicates that the current pulse train should
be stopped when the system time reaches the current target time.

m EMAC_PPS_COMMAND_STOP_NOW indicates that the current pulse train should be
stopped immediately.

m EMAC_PPS_COMMAND_CANCEL_STOP cancels any pending stop command if the
system time has not yet reached the programmed target time.

In all cases, the width of the pulses generated is governed by the ui32Width parameter passed
to EMACTimestampPPSPeriodSet(). If a command starts a train of pulses, the period of the
pulses is governed by the ui32Period parameter passed to the same function. Target times
associated with PPS commands are set by calling EMACTimestampTargetSet().

Returns:
None.

182 February 22, 2017

Ethernet Controller

10.2.4.57 EMACTimestampPPSCommandModeSet

Configures the Ethernet MAC PPS output in command mode.

Prototype:
void
EMACTimestampPPSCommandModeSet (uint32_t ui32Base,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the controller.

ui32Config determines how the system target time is used.

Description:
The simple mode of operation offered by the PPS (Pulse Per Second) engine may be too
restrictive for some applications. The second mode, however, allows complex pulse trains to
be generated using commands that tell the engine to send individual pulses or start and stop
trains if pulses. In this mode, the pulse width and period may be set arbitrarily based on ticks
of the clock used to update the system time. Commands are triggered at specific times using
the target time last set using a call to EMACTimestampTargetSet().

The uiB2Config parameter may be used to control whether the target time is used to trigger
commands only or can also generate an interrupt to the CPU. Valid values are:

m EMAC_PPS_TARGET_INT configures the target time to only raise an interrupt and not to
trigger any pending PPS command.

m EMAC_PPS_TARGET_PPS configures the target time to trigger a pending PPS command
but not raise an interrupt.

m EMAC_PPS_TARGET_BOTH configures the target time to trigger any pending PPS com-
mand and also raise an interrupt.

To use command mode, an application must call this function to enable the mode, then call:

m EMACTimestampPPSPeriodSet() to set the desired pulse width and period then
m EMACTimestampTargetSet() to set the time at which the next command is executed, and
finally

m EMACTimestampPPSCommand() to send a command to cause the pulse or pulse train to
be started at the required time.

Returns:
None.

10.2.4.58 EMACTimestampPPSPeriodSet

Sets the period and width of the pulses on the Ethernet MAC PPS output.

Prototype:
void
EMACTimestampPPSPeriodSet (uint32_t ui32Base,
uint32_t ui32Period,
uint32_t ui32Width)

February 22, 2017 183

Ethernet Controller

Parameters:

ui32Base is the base address of the controller.

ui32Period is the period of the PPS output expressed in terms of system time update ticks.

ui32Width is the width of the high portion of the PPS output expressed in terms of system
time update ticks.

Description:

This function may be used to control the period and duty cycle of the signal output on the
Ethernet MAC PPS pin when the PPS generator is operating in command mode and a com-
mand to send one or more pulses has been executed. Command mode is selected by calling
EMACTimestampPPSCommandModeSet().

In simple mode, the PPS output signal frequency is controlled by the ui32FreqConfig parameter
passed to EMACTimestampPPSSimpleModeSet().

The ui32Period and ui32Width parameters are expressed in terms of system time update ticks.
When the system time is operating in coarse update mode, each tick is equivalent to the sys-
tem clock. In fine update mode, a tick occurs every time the 32-bit system time accumulator
overflows and this, in turn, is determined by the value passed to the function EMACTimes-
tampAddendSet(). Regardless of the tick source, each tick increments the actual system time,
queried using EMACTimestampSysTimeGet() by the subsecond increment value passed in the
ui325ubSecondinc to EMACTimestampConfigSet().

Returns:

None.

10.2.4.59 EMACTimestampPPSSimpleModeSet

Configures the Ethernet MAC PPS output in simple mode.

Prototype:

void
EMACTimestampPPSSimpleModeSet (uint32_t ui32Base,
uint32_t ui32FreqgConfig)

Parameters:

ui32Base is the base address of the controller.
ui32FreqConfig determines the frequency of the output generated on the PPS pin.

Description:

This function configures the Ethernet MAC PPS (Pulse Per Second) engine to operate in its
simple mode which allows the generation of a few, fixed frequencies and pulse widths on
the PPS pin. If more complex pulse train generation is required, the MAC also provides a
command-based PPS control mode that can be selected by calling EMACTimestampPPSCom-
mandModeSet().

The ui32FreqConfig parameter may take one of the following values:

m EMAC_PPS_SINGLE_PULSE generates a single high pulse on the PPS output once per
second. The pulse width is the same as the system clock period.

m EMAC_PPS_1HZ generates a 1Hz signal on the PPS output. This option is not available
if the system time subsecond counter is currently configured to operate in binary rollover
mode.

184

February 22, 2017

Ethernet Controller

m EMAC_PPS_2HZ, EMAC_PPS_4HZ, EMAC_PPS_8HZ, EMAC_PPS_16HZ,
EMAC_PPS_32HZ, EMAC_PPS_64HZ, EMAC_PPS_128HZ, EMAC_PPS_256HZ,
EMAC_PPS_512HZ, EMAC_PPS_1024HZ, EMAC_PPS_2048HZ, EMAC_PPS_4096HZ,
EMAC_PPS_8192HZ, EMAC_PPS_16384HZ generate the requested frequency on the
PPS output in both binary and digital rollover modes.

m EMAC_PPS_32768HZ generates a 32KHz signal on the PPS output. This option is not
available if the system time subsecond counter is currently configured to operate in digital
rollover mode.

Except when EMAC_PPS_SINGLE_PULSE is specified, the signal generated on PPS has a
duty cycle of 50% when binary rollover mode is used for the system time subsecond count.
In digital mode, the output frequency averages the value requested and is resynchronized
each second. For example, if EMAC_PPS_4HZ is selected in digital rollover mode, the output
generates three clocks with 50 percent duty cycle and 268 ms period followed by a fourth clock
of 195 ms period, 134 ms low and 61 ms high.

Returns:

None.

10.2.4.60 EMACTimestampSysTimeGet

Gets the current system time.

Prot

otype:

void

EMACTimestampSysTimeGet (uint32_t ui32Base,
uint32_t xpui32Seconds,
uint32_t xpui32SubSeconds)

Parameters:

ui32Base is the base address of the controller.
pui32Seconds points to storage for the current seconds value.
pui32SubSeconds points to storage for the current subseconds value.

Description:

This function may be used to get the current system time.

The meaning of ui32SubSeconds depends on the current system time configuration. If
EMACTimestampConfigSet() was previously called with the EMAC_TS_DIGITAL_ROLLOVER
configuration option, each bit in the ui32SubSeconds value represents 1 ns. If
EMAC_TS_BINARY_ROLLOVER was specified instead, a ui32SubSeconds bit represents
0.46 ns.

Returns:

None.

10.2.4.61 EMACTimestampSysTimeSet

Sets the current system time.

February 22, 2017

185

Ethernet Controller

Prototype:
void
EMACTimestampSysTimeSet (uint32_t ui32Base,
uint32_t ui32Seconds,
uint32_t ui32SubSeconds)

Parameters:
ui32Base is the base address of the controller.
ui32Seconds is the seconds value of the new system clock setting.
ui32SubSeconds is the subseconds value of the new system clock setting.

Description:
This function may be used to set the current system time. The system clock is set to the value
passed in the ui32Seconds and ui32SubSeconds parameters.

The meaning of ui32SubSeconds depends on the current system time configuration. |If
EMACTimestampConfigSet() was previously called with the EMAC_TS_DIGITAL_ROLLOVER

configuration option, each bit in the wi32SubSeconds value represents 1 ns. If
EMAC_TS_BINARY_ROLLOVER was specified instead, a ui32SubSeconds bit represents
0.46 ns.

Returns:
None.

10.2.4.62 EMACTimestampSysTimeUpdate

Adjusts the current system time upwards or downwards by a given amount.

Prototype:
void
EMACTimestampSysTimeUpdate (uint32_t ui32Base,
uint32_t ui32Seconds,
uint32_t ui32SubSeconds,
bool blInc)

Parameters:
ui32Base is the base address of the controller.
ui32Seconds is the seconds value of the time update to apply.
ui32SubSeconds is the subseconds value of the time update to apply.
binc defines the direction of the update.

Description:
This function may be used to adjust the current system time either upwards or downwards by
a given amount. The size of the adjustment is given by the ui32Seconds and ui32SubSeconds
parameter and the direction by the binc parameter. When binc is true, the system time is
advanced by the interval given. When it is false, the time is retarded by the interval.

The meaning of ui32SubSeconds depends on the current system time configuration. If EMAC-
TimestampConfigSet() was previously called with the EMAC TS DIGITAL_ROLLOVER
configuration option, each bit in the subsecond value represents 1 ns. If
EMAC_TS _BINARY_ROLLOVER was specified instead, a subsecond bit represents 0.46 ns.

Returns:
None.

186 February 22, 2017

Ethernet Controller

10.2.4.63 EMACTimestampTargetIntDisable

Disables the Ethernet system time interrupt.

Prototype:
void
EMACTimestampTargetIntDisable (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used to disable any pending Ethernet system time interrupt previously
scheduled using calls to EMACTimestampTargetSet() and EMACTimestampTargetintEnable().

Returns:
None.

10.2.4.64 EMACTimestampTargetintEnable

Enables the Ethernet system time interrupt.

Prototype:
void
EMACTimestampTargetIntEnable (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be used after EMACTimestampTargetSet() to schedule an interrupt at some
future time. The time reference for the function is the IEEE 1588 time as returned by EMAC-
TimestampSysTimeGet(). To generate an interrupt when the system time exceeds a given
value, call this function to set the desired time, then EMACTimestampTargetintEnable() to en-
able the interrupt. When the system time increments past the target time, an Ethernet interrupt
with status EMAC_INT_TIMESTAMP is generated.

Returns:
None.

10.2.4.65 EMACTimestampTargetSet

Sets the target system time at which the next Ethernet timer interrupt is generated.

Prototype:
void
EMACTimestampTargetSet (uint32_t ui32Base,
uint32_t ui32Seconds,
uint32_t ui32SubSeconds)

Parameters:
ui32Base is the base address of the controller.

February 22, 2017 187

Ethernet Controller

ui32Seconds is the second value of the desired target time.
ui32SubSeconds is the subseconds value of the desired target time.

Description:
This function may be used to schedule an interrupt at some future time. The time reference for
the function is the IEEE 1588 time as returned by EMACTimestampSysTimeGet(). To generate
an interrupt when the system time exceeds a given value, call this function to set the desired
time, then EMACTimestampTargetintEnable() to enable the interrupt. When the system time
increments past the target time, an Ethernet interrupt with status EMAC_INT_TIMESTAMP is
generated.

The accuracy of the interrupt timing depends on the Ethernet timer update frequency and
the subsecond increment value currently in use. The interrupt is generated on the first timer
increment that causes the system time to be greater than or equal to the target time set.

Returns:
None.

10.2.4.66 EMACTxDisable

Disables the Ethernet controller transmitter.

Prototype:
void
EMACTxDisable (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
When terminating operations on the Ethernet interface, this function should be called. This
function disables the transmitter.

Returns:
None.

10.2.4.67 EMACTxDMACurrentBufferGet

Returns the current DMA transmit buffer pointer.

Prototype:
uint8_t =
EMACTxDMACurrentBufferGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function may be called to determine which buffer the transmit DMA engine is currently
reading from.

Returns:
Returns the transmit buffer address currently being read by the DMA engine.

188 February 22, 2017

Ethernet Controller

10.2.4.68 EMACTxDMACurrentDescriptorGet

Returns the current DMA transmit descriptor pointer.

Prototype:
tEMACDMADescriptor =
EMACTxDMACurrentDescriptorGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the current Ethernet transmit descriptor read by the DMA.

Returns:
Returns a pointer to the start of the current transmit DMA descriptor.

10.2.4.69 EMACTxDMADescriptorListGet

Returns a pointer to the start of the DMA transmit descriptor list.

Prototype:
tEMACDMADescriptor =*
EMACTxDMADescriptorListGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function returns a pointer to the head of the Ethernet MAC’s transmit DMA descriptor list.
This value corresponds to the pointer originally set using a call to EMACTxDMADescriptorList-
Set().

Returns:
Returns a pointer to the start of the DMA transmit descriptor list.

10.2.4.70 EMACTxDMADescriptorListSet

Sets the DMA transmit descriptor list pointer.

Prototype:
void
EMACTxDMADescriptorListSet (uint32_t ui32Base,
tEMACDMADescriptor xpDescriptor)

Parameters:
ui32Base is the base address of the controller.

pDescriptor points to the first DMA descriptor in the list to be passed to the transmit DMA
engine.

February 22, 2017 189

Ethernet Controller

Description:

This function sets the Ethernet MAC’s transmit DMA descriptor list pointer. The pDescriptor
pointer must point to one or more descriptor structures.

When multiple descriptors are provided, they can be either chained or unchained.
Chained descriptors are indicated by setting the DESO0_TX_CTRL_CHAINED or
DES1_RX_CTRL_CHAINED bit in the relevant word of the transmit or receive descrip-
tor. If this bit is clear, unchained descriptors are assumed.

Chained descriptors use a link pointer in each descriptor to point to the next descriptor in the
chain.

Unchained descriptors are assumed to be contiguous in memory with a consistent offset be-
tween the start of one descriptor and the next. If unchained descriptors are used, the pvLink
field in the descriptor becomes available to store a second buffer pointer, allowing each de-
scriptor to point to two buffers rather than one. In this case, the ui32DescSkipSize parameter
to EMACInit() must previously have been set to the number of words between the end of one
descriptor and the start of the next. This value must be 0 in cases where a packed array of
tEMACDMADescriptor structures is used. If the application wishes to add new state fields to
the end of the descriptor structure, the skip size should be set to accommodate the newly sized
structure.

Applications are responsible for initializing all descriptor fields appropriately before passing the
descriptor list to the hardware.

Returns:

None.

10.2.4.71 EMACTxDMAPollIDemand

Orders the MAC DMA controller to attempt to acquire the next transmit descriptor.

Prototype:

void
EMACTxDMAPollDemand (uint32_t ui32Base)

Parameters:

ui32Base is the base address of the Ethernet controller.

Description:

This function must be called to restart the transmitter if it has been suspended due to the
current transmit DMA descriptor being owned by the host. Once the application writes new
values to the descriptor and marks it as being owned by the MAC DMA, this function causes
the hardware to attempt to acquire the descriptor and start transmission of the new data.

Returns:

None.

10.2.4.72 EMACTxEnable

Enables the Ethernet controller transmitter.

190

February 22, 2017

Ethernet Controller

Prototype:
void
EMACTxEnable (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
When starting operations on the Ethernet interface, this function should be called to enable the
transmitter after all configuration has been completed.

Returns:
None.

10.2.4.73 EMACTxFlush

Flushes the Ethernet controller transmit FIFO.

Prototype:
void
EMACTxFlush (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function flushes any data currently held in the Ethernet transmit FIFO. Data that has
already been passed to the MAC for transmission is transmitted, possibly resulting in a transmit
underflow or runt frame transmission.

Returns:
None.

10.2.4.74 EMACVLANHashFilterBitCalculate

Returns the bit number to set in the VLAN hash filter corresponding to a given tag.

Prototype:
uint32_t
EMACVLANHashFilterBitCalculate (uintl6_t uil6Taqg)

Parameters:
ui16Tag is the VLAN tag for which the hash filter bit number is to be determined.

Description:
This function may be used to determine which bit in the VLAN hash filter to set to describe a
given 12- or 16-bit VLAN tag. The returned value is a 4-bit value indicating the bit number to
set within the 16-bit VLAN hash filter. For example, if 0x02 is returned, this indicates that bit 2
of the hash filter must be set to pass the supplied VLAN tag.

Returns:
Returns the bit number to set in the VLAN hash filter to describe the passed tag.

February 22, 2017 191

Ethernet Controller

10.2.4.75 EMACVLANHashFilterGet

Returns the current value of the hash filter used to control reception of VLAN-tagged frames.

Prototype:
uint32_t
EMACVLANHashFilterGet (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function allows the current VLAN tag hash filter value to be returned. Additional VLAN tags
may be added to this filter by setting the appropriate bits, determined by calling EMACVLAN-
HashFilterBitCalculate(), and then calling EMACVLANHashFilterSet() to set the new filter
value.

Returns:
Returns the current value of the VLAN hash filter.

10.2.4.76 EMACVLANHashFilterSet

Sets the hash filter used to control reception of VLAN-tagged frames.

Prototype:

void
EMACVLANHashFilterSet (uint32_t ui32Base,
uint32_t ui32Hash)

Parameters:
ui32Base is the base address of the controller.

ui32Hash is the hash filter value to set.

Description:
This function allows the VLAG tag hash filter to be set. By using hash filtering, several different
VLAN tags can be filtered very easily at the cost of some false positive results that must be
removed by software.

The hash filter value passed in ui32Hash may be built up by calling EMACVLANHashFilterBit-
Calculate() for each VLAN tag that is to pass the filter and then set each of the bits for which
the numbers are returned by that function. Care must be taken when clearing bits in the hash
filter due to the fact that there is a many-to-one correspondence between VLAN tags and hash
filter bits.

Returns:
None

10.2.4.77 EMACVLANRXxConfigGet

Returns the currently-set options related to reception of VLAN-tagged frames.

192 February 22, 2017

Ethernet Controller

Prototype:
uint32_t
EMACVLANRxConfigGet (uint32_t ui32Base,
uintlé6_t xpuil6Tag)

Parameters:
ui32Base is the base address of the controller.
pui16Tag points to storage which is written with the currently configured VLAN tag used for
perfect filtering.

Description:
This function returns information on how the receiver is currently handling IEEE 802.1Q VLAN-
tagged frames.

See also:
EMACVLANRxConfigSet()

Returns:
Returns flags defining how VLAN-tagged frames are handled. The value is a logical OR of the
following flags:

m EMAC_VLAN_RX_HASH_ENABLE indicates that hash filtering is enabled for VLAN tags. If
this flag is absent, perfect filtering using the tag returned in xpui16Tag is performed.

m EMAC_VLAN_RX_SVLAN_ENABLE indicates that the receiver recognizes S-VLAN (Type =
0x88A8) frames as valid VLAN-tagged frames. If absent, only frames with type 0x8100 are
considered valid VLAN frames.

m EMAC_VLAN_RX_INVERSE_MATCH indicates that the receiver passes all VLAN frames for
which the tags do not match the xpui16Tag value. If this flag is absent, only tagged frames
matching xpui16Tag are passed.

m EMAC_VLAN_RX_12BIT_TAG indicates that the receiver is comparing only the bottom 12
bits of xpui16Tag when performing either perfect or hash filtering of VLAN frames. If this
flag is absent, all 16 bits of the frame tag are examined when filtering. If this flag is set and
xpui16Tag has all bottom 12 bits clear, the receiver passes all frames with types 0x8100 or
0x88A8 regardless of the tag values they contain.

10.2.4.78 EMACVLANRxConfigSet

Sets options related to reception of VLAN-tagged frames.

Prototype:
void
EMACVLANRxConfigSet (uint32_t ui32Base,
uintl6_t uiléTag,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the controller.

ui16Tag is the IEEE 802.1Q VLAN tag expected for incoming frames.
ui32Config determines how the receiver handles VLAN-tagged frames.

February 22, 2017 193

Ethernet Controller

Description:
This function configures the receiver’s handling of IEEE 802.1Q VLAN tagged frames. Incom-
ing tagged frames are filtered using either a perfect filter or a hash filter. When hash filtering
is disabled, VLAN frames tagged with the value of ui16Tag pass the filter and all others are
rejected. The tag comparison may involve all 16 bits or only the 12-bit VLAN ID portion of the
tag.

The ui32Config parameter is a logical OR of the following values:

m EMAC_VLAN_RX_HASH_ENABLE enables hash filtering for VLAN tags. If this flag is
absent, perfect filtering using the tag supplied in ui167Tag is performed. The hash filter may
be set using EMACVLANHashFilterSet(), and EMACVLANHashFilterBitCalculate() may be
used to determine which bits to set in the filter for given VLAN tags.

m EMAC_VLAN_RX_SVLAN_ENABLE causes the receiver to recognize S-VLAN (Type =
0x88A8) frames as valid VLAN-tagged frames. If absent, only frames with type 0x8100
are considered valid VLAN frames.

m EMAC_VLAN_RX_INVERSE_MATCH causes the receiver to pass all VLAN frames for
which the tags do not match the supplied ui16Tag value. If this flag is absent, only tagged
frames matching ui16Tag are passed.

m EMAC_VLAN_RX_12BIT_TAG causes the receiver to compare only the bottom 12 bits
of uit6Tag when performing either perfect or hash filtering of VLAN frames. If this flag
is absent, all 16 bits of the frame tag are examined when filtering. If this flag is set and
ui16Tag has all bottom 12 bits clear, the receiver passes all frames with types 0x8100 or
0x88A8 regardless of the tag values they contain.

Note:
To ensure that VLAN frames that fail the tag filter are dropped by the MAC, EMACFrame-
FilterSet() must be called with the EMAC_FRMFILTER_VLAN flag set in the ui32FilterOpts
parameter. If this flag is not set, failing VLAN packets are received by the application, but bit
10 of RDESO (EMAC_FRMFILTER_VLAN) is clear indicating that the packet did not match the
current VLAG tag filter.

See also:
EMACVLANRxConfigGet()

Returns:
None

10.2.4.79 EMACVLANTXxConfigGet

Returns currently-selected options related to transmission of VLAN-tagged frames.

Prototype:
uint32_t
EMACVLANTxConfigGet (uint32_t ui32Base,
uintl6_t xpuiléTag)

Parameters:
ui32Base is the base address of the controller.
pui16Tag points to storage that is written with the VLAN tag currently being used for insertion
or replacement.

194 February 22, 2017

Ethernet Controller

Description:
This function returns information on the current settings related to VLAN tagging of transmitted
frames.

See also:
EMACVLANTxConfigSet()

Returns:
Returns flags describing the current VLAN configuration relating to frame transmission. The
return value is a logical OR of the following values:

m EMAC_VLAN_TX_SVLAN indicates that the S-VLAN type (0x88A8) is being used when in-
serting or replacing tags in transmitted frames. If this label is absent, C-VLAN type (0x8100)
is being used.

m EMAC_VLAN_TX_USE_VLC indicates that the transmitter is processing VLAN frames ac-
cording to the VLAN control (VLC) value returned here. If this tag is absent, VLAN handling is
controlled by fields in the transmit descriptor.

If EMAC_VLAN_TX_USE_VLC is returned, one of the following four labels is also included to
define the transmit VLAN tag handling. Note that this value may be extracted from the return value
using the mask EMAC_VLAN_TX_VLC_MASK.

m EMAC_VLAN_TX_VLC_NONE indicates that the transmitter is not performing VLAN tag in-
sertion, deletion or replacement.

m EMAC_VLAN_TX_VLC_DELETE indicates that the transmitter is removing VLAN tags from
all transmitted frames which contain them.

m EMAC_VLAN_TX_VLC_INSERT indicates that the transmitter is inserting a VLAN type and
tag into all outgoing frames regardless of whether or not they already contain a VLAN tag.

m EMAC_VLAN_TX_VLC_REPLACE indicates that the transmitter is replacing the VLAN tag in
all transmitted frames of type 0x8100 or 0x88A8 with the value returned in xpui16Tag.

10.2.4.80 EMACVLANTxConfigSet

Sets options related to transmission of VLAN-tagged frames.

Prototype:
void
EMACVLANTxConfigSet (uint32_t ui32Base,
uintlé6_t uiléTag,
uint32_t ui32Config)

Parameters:
ui32Base is the base address of the controller.
ui16Tag is the VLAN tag to be used when inserting or replacing tags in transmitted frames.
ui32Config determines the VLAN-related processing performed by the transmitter.

Description:
This function is used to configure transmitter options relating to IEEE 802.1Q VLAN tagging.
The transmitter may be set to insert tagging into untagged frames or replace existing tags with
new values.

The ui16Tag parameter contains the VLAN tag to be used in outgoing tagged frames. The
ui32Config parameter is a logical OR of the following labels:

February 22, 2017 195

Ethernet Controller

m EMAC_VLAN_TX_SVLAN uses the S-VLAN type (0x88A8) when inserting or replacing
tags in transmitted frames. If this label is absent, C-VLAN type (0x8100) is used.

m EMAC_VLAN_TX_USE_VLC informs the transmitter that the VLAN tag handling should
be defined by the VLAN control (VLC) value provided in this function call. If this tag is
absent, VLAN handling is controlled by fields in the transmit descriptor.

If EMAC_VLAN_TX_USE_VLC is set, one of the following four labels must also be included to
define the transmit VLAN tag handling:

m EMAC_VLAN_TX_VLC_NONE instructs the transmitter to perform no VLAN tag insertion,
deletion or replacement.

m EMAC_VLAN_TX_VLC_DELETE instructs the transmitter to remove VLAN tags from all
transmitted frames that contain them. As a result, bytes 13, 14, 15 and 16 are removed
from all frames with types 0x8100 or 0x88AS8.

m EMAC_VLAN_TX_VLC_INSERT instructs the transmitter to insert a VLAN type and tag
into all outgoing frames regardless of whether or not they already contain a VLAN tag.

m EMAC_VLAN_TX_VLC_REPLACE instructs the transmitter to replace the VLAN tag in all
frames of type 0x8100 or 0x88A8 with the value provided to this function in the ui16Tag
parameter.

Returns:
None

10.2.4.81 EMACWOoLEnter

Enables the wake-on-LAN feature of the MAC controller.

Prototype:
void
EMACWoLEnter (uint32_t ui32Base)

Parameters:
ui32Base is the base address of the controller.

Description:
This function is used to enable the wake-on-LAN feature of the MAC controller. It is done by
first checking if the transmit path is idle and disabling the trasnmitter and the transmit DMA
controller. Then it checks if any data from the network is being actively received and if not then
it disables the receive DMA controller.

Returns:
None.

10.3 Programming Example

The following example shows how to use the this API to initialize the Ethernet controller to transmit
and receive packets. Note that this is a very much simplified example which shows only the basic
flow required. A full implementation would contain rather more error checking and recovery code.

196 February 22, 2017

Ethernet Controller

//**************'k**************************'k********‘k**************************
// Ethernet DMA descriptors.

// The MAC hardware needs a minimum of 3 receive descriptors to operate. The
// number used will be application-dependent and should be tuned for best
// performance.

//***
#define NUM_TX_DESCRIPTORS 3

#define NUM_RX_DESCRIPTORS 3

tEMACDMADescriptor g_psRxDescriptor [NUM_TX DESCRIPTORS];

tEMACDMADescriptor g_psTxDescriptor [NUM_RX_DESCRIPTORS];

uint32_t g_ui32RxDescIndex;
uint32_t g_ui32TxDescIndex;

[/ H Kk kK kK ok Kk Kk ko ko kK kK ok Kk Kk Kk Kk ko ko ko ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok K ok ok ok ok ok ok ok ko kK kK kK K

//

// Transmit and receive buffers. These will typically be allocated within your
// network stack somewhere.

//

//***
#define RX_BUFFER_SIZE 1536
uint8_t g_ppui8RxBuffer [NUM_RX_DESCRIPTORS] [RX_BUFFER_SIZE];

//***
//
// Read a packet from the DMA receive buffer and return the number of bytes
// read.
//
//***
int32_t
ProcessReceivedPacket (void)
{

int_fast32_t i32Framelen;

//
// By default, we assume we got a bad frame.
//
i32Framelen = 0;
//
// Make sure that we own the receive descriptor.
//
if (! (g_psRxDescriptor[g_ui32RxDescIndex].ui32CtrlStatus & DESO_RX_CTRL_OWN))
{
//
// We own the receive descriptor so check to see if it contains a valid
// frame.
//

if (! (g_psRxDescriptor[g_ui32RxDescIndex] .ui32CtrlStatus &
DESO_RX_STAT_ERR))

//
// We have a valid frame. First check that the "last descriptor"
// flag is set. We sized the receive buffer such that it can

// always hold a valid frame so this flag should never be clear at
// this point but...

if (g_psRxDescriptor[g_ui32RxDescIndex].ui32CtrlStatus &
DESO_RX_STAT_LAST_DESC)

//
// What size is the received frame?

//

February 22, 2017 197

Ethernet Controller

i32Framelen =
((g_psRxDescriptor[g_ui32RxDescIndex] .ui32CtrlStatus &
DESO_RX_STAT_FRAME_LENGTH_M) >>
DESO_RX_STAT_FRAME_LENGTH_S) ;

//

// Pass the received buffer up to the application to handle.

//

ApplicationProcessFrame (1i32Framelen,
g_psRxDescriptor[g_ui32RxDescIndex] .pvBufferl);

// Now that we are finished dealing with this descriptor, hand

// it back to the hardware. Note that we assume

// ApplicationProcessFrame () is finished with the buffer at this point
// so it is safe to reuse.

g_psRxDescriptor[g_ui32RxDescIndex] .ui32CtrlStatus =
DESO_RX_CTRL_OWN;

//
// Move on to the next descriptor in the chain.
//
g_ui32RxDescIndex++;
if (g_ui32RxDescIndex == NUM_RX_ DESCRIPTORS)
{
g_ui32RxDescIndex = 0;
}
}
//
// Return the Frame Length
//

return (i32FramelLen) ;

//***
//
// The interrupt handler for the Ethernet interrupt.
//
//***
void
EthernetIntHandler (void)
{

uint32_t ui32Temp;

//

// Read and Clear the interrupt.

//

ui32Temp = EMACIntStatus (EMACO_BASE, true);
EMACIntClear (EMACO_BASE, ui32Temp);

//
// Check to see if an RX Interrupt has occurred.
//
if (ui32Temp & EMAC_INT_RECEIVE)
{
//
// Indicate that a packet has been received.
//

ProcessReceivedPacket () ;

198

February 22, 2017

Ethernet Controller

//***
//
// Transmit a packet from the supplied buffer. This function would be called
// directly by the application. pui8Buf points to the Ethernet frame to send
// and 132BufLen contains the number of bytes in the frame.
//
//***
static int32_t
PacketTransmit (uint8_t *pui8Buf, int32_t i32Buflen)
{

//

// Wait for the transmit descriptor to free up.

//

while (g_psTxDescriptor[g_ui32TxDescIndex] .ui32CtrlStatus &

DESO_TX_CTRL_OWN)

//
// Spin and waste time.
//
}
//
// Move to the next descriptor.
//
g_ui32TxDescIndex++;
if (g_ui32TxDescIndex == NUM_TX_DESCRIPTORS)
{
g_ui32TxDescIndex = 0;
}
//
// Fill in the packet size and pointer, and tell the transmitter to start
// work.
//
g_psTxDescriptor[g_ui32TxDescIndex] .ui32Count = (uint32_t)i32Buflen;

g_psTxDescriptor[g_ui32TxDescIndex] .pvBufferl = pui8Buf;

g_psTxDescriptor[g_ui32TxDescIndex] .ui32CtrlStatus =
(DESO_TX_CTRL_LAST_SEG | DESO_TX_CTRL_FIRST_SEG |
DESO_TX_CTRL_INTERRUPT | DESO_TX_ CTRL_IP_ALL_CKHSUMS |
DESO_TX_CTRL_CHAINED | DESO_TX_CTRL_OWN) ;

// Tell the DMA to reacquire the descriptor now that we’ve filled it in.
// This call is benign if the transmitter hasn’t stalled and checking
// the state takes longer than just issuing a poll demand so we do this
// for all packets.

EMACTxDMAPol1lDemand (EMACO_RBASE) ;

//
// Return the number of bytes sent.
//

return (132BuflLen) ;

//***
//
// Initialize the transmit and receive DMA descriptors.
//
//***
void
InitDescriptors (uint32_t ui32Base)
{

uint32_t ui32Loop;

February 22, 2017 199

Ethernet Controller

//
// Initialize each of the transmit descriptors. Note that we leave the
// buffer pointer and size empty and the OWN bit clear here since we have
// not set up any transmissions yet.
//
for (ui32Loop = 0; ui32Loop < NUM_TX_DESCRIPTORS; ui32Loop++)
{
g_psTxDescriptor[ui32Loop] .ui32Count = DES1_TX_CTRL_SADDR_INSERT;
g_psTxDescriptor[ui32Loop] .DES3.pLink =
(ui32Loop == (NUM_TX_DESCRIPTORS - 1)) *?
g_psTxDescriptor : &g_psTxDescriptor[ui32Loop + 1];
g_psTxDescriptor[ui32Loop] .ui32CtrlStatus =
(DESO_TX_CTRL_LAST_SEG | DESO_TX_CTRL_FIRST_SEG |
DESO_TX_CTRL_INTERRUPT | DESO_TX_CTRL_CHAINED |
DESO_TX_CTRL_IP_ALL_CKHSUMS) ;

//
// Initialize each of the receive descriptors. We clear the OWN bit here
// to make sure that the receiver doesn’t start writing anything
// immediately.
//
for (ui32Loop = 0; ui32Loop < NUM_RX_DESCRIPTORS; ui32Loop++)
{
g_psRxDescriptor[ui32Loop] .ui32CtrlStatus = 0;
g_psRxDescriptor[ui32Loop] .ui32Count =
(DES1_RX_CTRL_CHAINED |
(RX_BUFFER_SIZE << DES1_RX_CTRL_BUFF1_SIZE_S));
g_psRxDescriptor[ui32Loop] .pvBufferl = g_ppui8RxBuffer[ui32Loop];
g_psRxDescriptor[ui32Loop] .DES3.pLink =
(ui32Loop == (NUM_RX_DESCRIPTORS - 1)) *?
g_psRxDescriptor : &g_psRxDescriptor[ui32Loop + 1];

//

// Set the descriptor pointers in the hardware.

//

EMACRxDMADescriptorListSet (ui32Base, g_psRxDescriptor);
EMACTxDMADescriptorListSet (ui32Base, g_psTxDescriptor);

// Start from the beginning of both descriptor chains. We actually set
// the transmit descriptor index to the last descriptor in the chain

// since it will be incremented before use and this means the first

// transmission we perform will use the correct descriptor.

g_ui32RxDescIndex = 0;
g_ui32TxDescIndex = NUM_TX_DESCRIPTORS - 1;

//***
//
// This example demonstrates the use of the Ethernet Controller.
//
//****‘k‘k‘k‘k‘k‘k**********‘k‘k‘k********‘k‘k‘k***
int
main (void)
{

uint32_t ui32User0, ui32Userl, ui32Loop, ui32SysClock;

uint8_t ui8PHYAddr;

uint8_t pui8MACAddr[6];

//
// Run from the PLL at 120 MHz.

//
ui328ysClock = SysCtlClockFreqgSet ((SYSCTL_XTAL_25MHZ |

200

February 22, 2017

Ethernet Controller

SYSCTL_OSC_MAIN |
SYSCTL_USE_PLL |
SYSCTL_CFG_VCO_480), 120000000);

//
// Configure the device pins.
//
PinoutSet () ;
//
// Read the MAC address from the user registers.
//
FlashUserGet (&ui32User(0, &ui32Userl);
1f ((ui32User0 == Oxffffffff) || (uil32Userl == Oxffffffff)
{
//
// We should never get here. This is an error if the MAC address has
// not been programmed into the device. Exit the program.
//
while (1)
{
}
}
!/

// Convert the 24/24 split MAC address from NV ram into a 32/16 split MAC
// address needed to program the hardware registers, then program the MAC
// address into the Ethernet Controller registers.

//

Pui8MACAddr[0] = ((ui32User0 >> 0) & 0Oxff);

Pui8MACAddr[1] = ((ui32User0 >> 8) & Oxff);

Pui8MACAddr[2] = ((ui32User0 >> 16) & 0Oxff);

Pui8MACAddr[3] = ((ui32Userl >> 0) & Oxff);

Pui8MACAddr[4] = ((ui32Userl >> 8) & O0xff);

Pui8MACAddr[5] = ((ui32Userl >> 16) & 0Oxff);

//

// Enable and reset the Ethernet modules.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_EMACO) ;
SysCtlPeripheralEnable (SYSCTL_PERIPH_EPHYO) ;
SysCtlPeripheralReset (SYSCTL_PERIPH_EMACO) ;
SysCtlPeripheralReset (SYSCTL_PERIPH_EPHYO) ;

//

// Wait for the MAC to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_EMACO))
{

}

//

// Configure for use with the internal PHY.

//

ui8PHYAddr = O;

EMACPHYConfigSet (EMACO_BASE,
(EMAC_PHY_TYPE_INTERNAL |
EMAC_PHY_INT_MDIX_EN |
EMAC_PHY_AN_100B_T_FULL_DUPLEX)) ;

//

// Reset the MAC to latch the PHY configuration.
//

EMACReset (EMACO_BASE) ;

//

February 22, 2017 201

Ethernet Controller

// Initialize the MAC and set the DMA mode.
//
EMACInit (EMACO_BASE, ui32SysClock,
EMAC_BCONFIG_MIXED_BURST | EMAC_BCONFIG_PRIORITY_FIXED, 4, 4,

0);
//
// Set MAC configuration options.
//

EMACConfigSet (EMACO_BASE,
(EMAC_CONFIG_FULL_DUPLEX |
EMAC_CONFIG_CHECKSUM_OFFLOAD |
EMAC_CONFIG_7BYTE_PREAMBLE |
EMAC_CONFIG_IF_GAP_96BITS |
EMAC_CONFIG_USE_MACADDRO |
EMAC_CONFIG_SA_FROM_DESCRIPTOR |
EMAC_CONFIG_BO_LIMIT_1024),
(EMAC_MODE_RX_STORE_FORWARD |
EMAC_MODE_TX_STORE_FORWARD |
EMAC_MODE_TX_THRESHOLD_64_BYTES |
EMAC_MODE_RX_THRESHOLD_64_BYTES), 0);

//
// Initialize the Ethernet DMA descriptors.

//
InitDescriptors (EMACO_BASE) ;

//

// Program the hardware with its MAC address (for filtering).
//

EMACAddrSet (EMACO_BASE, 0, pui8MACAddr);

//

// Wait for the link to become active.

//

while ((EMACPHYRead (EMACO_BASE, ui8PHYAddr, EPHY_BMSR) &
EPHY_BMSR_LINKSTAT) == 0)

{

}

//

// Set MAC filtering options. We receive all broadcast and multicast

// packets along with those addressed specifically for us.

//

EMACFrameFilterSet (EMACO_BASE, (EMAC_FRMFILTER_SADDR |
EMAC_FRMFILTER_PASS_MULTICAST |
EMAC_FRMFILTER_PASS_NO_CTRL)) ;

//

// Clear any pending interrupts.

//

EMACIntClear (EMACO_BASE, EMACIntStatus (EMACO_BASE, false));

//

// Mark the receive descriptors as available to the DMA to start
// the receive processing.

//

for (ui32Loop = 0; ui32Loop < NUM_RX_DESCRIPTORS; ui32Loop++)

{

g_psRxDescriptor[ui32Loop] .ui32CtrlStatus |= DESO_RX_CTRL_OWN;
}
//
// Enable the Ethernet MAC transmitter and receiver.
//

EMACTxEnable (EMACO_BASE) ;

202

February 22, 2017

Ethernet Controller

EMACRxEnable (EMACO_BASE) ;

//
// Enable the Ethernet interrupt.
//
IntEnable (INT_EMACO) ;
//
// Enable the Ethernet RX Packet interrupt source.
//
EMACIntEnable (EMACO_BASE, EMAC_INT_RECEIVE);
//
// Application main loop continues....
//
while (1)
{
//
// Do main loop things...
//

February 22, 2017

203

Ethernet Controller

204 February 22, 2017

External Peripheral Interface (EPI)

11 External Peripheral Interface (EPI)

INtrOAUCH 0N . i 205
AP FUNCHONS . et e e e 205
Programming EXamIPIe e 235

11.1 Introduction

The EPI API provides functions to use the EPI module available in the Tiva microcontroller. The
EPI module provides a physical interface for external peripherals and memories. The EPI can
be configured to support several types of external interfaces and different sized address and data
buses.

Some features of the EPI module are:

m configurable interface modes including SDRAM, HostBus, and simple read/write protocols
m configurable address and data sizes

m configurable bus cycle timing

m blocking and non-blocking reads and writes

m FIFO for streaming reads

m interrupt and uDMA support

This driver is contained in driverlib/epi.c, with driverlib/epi.h containing the APl dec-
larations for use by applications.

11.2 API Functions

Functions

m void EPIAddressMapSet (uint32_t ui32Base, uint32_t ui32Map)

m void EPIConfigGPModeSet (uint32_t wui32Base, uint32_t ui32Config, uint32_t
ui32FrameCount, uint32_t ui32MaxWait)

void EPIConfigHB16CSSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Config)
void EPIConfigHB16Set (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32MaxWait)
void EPIConfigHB16TimingSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Config)
void EPIConfigHB8CSSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Config)

void EPIConfigHB8Set (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32MaxWait)
void EPIConfigHB8TimingSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Config)
void EPIConfigSDRAMSet (uint32_t ui32Base, uint32_t ui32Config, uint32_t ui32Refresh)
void EPIDividerCSSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32Divider)

void EPIDividerSet (uint32_t ui32Base, uint32_t ui32Divider)

void EPIDMATxCount (uint32_t ui32Base, uint32_t ui32Count)

void EPIFIFOConfig (uint32_t ui32Base, uint32_t ui32Config)

void EPlIntDisable (uint32_t ui32Base, uint32_t ui32IntFlags)

February 22, 2017 205

External Peripheral Interface (EPI)

11.2.1

m void EPIlIntEnable (uint32_t ui32Base, uint32_t ui32IntFlags)

m void EPIlIntErrorClear (uint32_t ui32Base, uint32_t ui32ErrFlags)

uint32_t EPIIntErrorStatus (uint32_t ui32Base)

void EPIlIntRegister (uint32_t ui32Base, void (xpfnHandler)(void))

uint32_t EPIIntStatus (uint32_t ui32Base, bool bMasked)

void EPIIntUnregister (uint32_t ui32Base)

void EPIModeSet (uint32_t ui32Base, uint32_t ui32Mode)

uint32_t EPINonBlockingReadAvail (uint32_t ui32Base)

void EPINonBlockingReadConfigure (uint32_t ui32Base, uint32_t ui32Channel, uint32_t

ui32DataSize, uint32_t ui32Address)

m uint32_t EPINonBlockingReadCount (uint32_t ui32Base, uint32_t ui32Channel)

m uint32_t EPINonBlockingReadGet16 (uint32_t ui32Base, uint32_t ui32Count, uint16 t
xpui16Buf)

m uint32_t EPINonBlockingReadGet32 (uint32_t ui32Base, uint32_t ui32Count, uint32_t
xpui32Buf)

m uint32_t EPINonBlockingReadGet8 (uint32_t ui32Base, uint32_t ui32Count, uint8_t «pui8Buf)

m void EPINonBlockingReadStart (uint32_t ui32Base, uint32_t ui32Channel, uint32_t
ui32Count)

m void EPINonBlockingReadStop (uint32_t ui32Base, uint32_t ui32Channel)

m uint32_t EPIPSRAMConfigRegGet (uint32_t ui32Base, uint32_t ui32CS)

m bool EPIPSRAMConfigRegGetNonBlocking (uint32_t ui32Base, uint32_t ui32CS, uint32_t

xpui32CR)

void EPIPSRAMConfigRegRead (uint32_t ui32Base, uint32_t ui32CS)

void EPIPSRAMConfigRegSet (uint32_t ui32Base, uint32_t ui32CS, uint32_t ui32CR)

uint8_t EPIWorkaroundByteRead (uint8_t «xpui8Addr)

void EPIWorkaroundByteWrite (uint8_t «pui8Addr, uint8_t ui8Value)

uint16_t EPIWorkaroundHWordRead (uint16_t «pui16Addr)

void EPIWorkaroundHWordWrite (uint16_t xpui16Addr, uint16_t ui16Value)

uint32_t EPIWorkaroundWordRead (uint32_t xpui32Addr)

void EPIWorkaroundWordWrite (uint32_t xpui82Addr, uint32_t ui32Value)

uint32_t EPIWriteFIFOCountGet (uint32_t ui32Base)

Detailed Description

The function EPIModeSet() is used to select the interface mode. The clock divider is set with the
EPIDividerSet() function which determines the speed of the external bus. The external device is
mapped into the processor memory or peripheral space using the EPIAddressMapSet() function.

Once the mode is selected, the interface is configured with one of the configuration functions. If
SDRAM mode is chosen, then the function EPIConfigSDRAMSet() is used to configure the SDRAM
interface. If Host-Bus 8 mode is chosen, then EPIConfigHB8Set() is used. If Host-Bus 16 mode is
chosen, then EPIConfigHB16Set() is used. If General-Purpose mode is chosen, then EPIConfig-
GPMode() is used.

After the mode has been selected and configured, then the device can be accessed by read-
ing and writing to the memory or peripheral address space that was programmed with EPIAd-
dressMapSet().

206

February 22, 2017

External Peripheral Interface (EPI)

There are more sophisticated ways to use the read/write interface. When an application is writing
to the mapped memory or peripheral space, the writes stall the processor until the write to the
external interface is completed. However, the EPI contains an internal transaction FIFO and can
buffer up to 4 pending writes without stalling the processor. Prior to writing, the application can test
to see if the EPI can take more write operations without stalling the processor by using the function
EPINonBlockingWriteCount(), which returns the number of non-blocking writes that can be made.

For efficient reads from the external device, the EPI contains a programmable read FIFO. After
setting a starting address and a count, data from sequential reads from the device can be stored in
the FIFO. The application can then periodically drain the FIFO by polling or by interrupts, optionally
using the uDMA controller. A non-blocking read is configured by using the function EPINonBlock-
ingReadConfigure(). The read operation is started with EPINonBlockingReadStart() and can be
stopped by calling EPINonBlockingReadStop(). The function EPINonBlockingReadCount() can be
used to determine the number of items remaining to be read, while the function EPINonBlock-
ingReadAvail() returns the number of items in the FIFO that can be read immediately without
stalling. There are 3 functions available for reading data from the FIFO and into a buffer provided by
the application. These functions are EPINonBlockingReadGet32(), EPINonBlockingReadGet16(),
EPINonBlockingReadGet8(), to read the data from the FIFO as 32-bit, 16-bit, or 8-bit data items.

The read FIFO and write transaction FIFO can be configured with the function EPIFIFOConfig().
This function is used to set the FIFO trigger levels and to enable error interrupts to be generated
when a read or write is stalled.

Interrupts are enabled or disabled with the functions EPlIntEnable() and EPIlIntDisable(). The inter-
rupt status can be read by calling EPIIntStatus(). If there is an error interrupt pending, the cause
of the error can be determined with the function EPIlIntErrorStatus(). The error can then be cleared
with EPIlIntErrorClear().

If dynamic interrupt registration is being used by the application, then an EPI interrupt handler can
be registered by calling EPIIntRegister(). This function loads the interrupt handler's address into
the vector table. The handler can be removed with EPIlIntUnregister().

11.2.2 Function Documentation

11.2.2.1 EPIAddressMapSet

Configures the address map for the external interface.

Prototype:
void
EPIAddressMapSet (uint32_t ui32Base,
uint32_t ui32Map)

Parameters:
ui32Base is the EPI module base address.

ui32Map is the address mapping configuration.

Description:
This function is used to configure the address mapping for the external interface, which then
determines the base address of the external memory or device within the processor peripheral
and/or memory space.

The parameter ui32Map is the logical OR of the following:

February 22, 2017 207

External Peripheral Interface (EPI)

11.2.2.2

Peripheral address space size, select one of:

+ EPI_ADDR_PER_SIZE_256B sets the peripheral address space to 256 bytes.

+ EPI_ADDR_PER_SIZE_64KB sets the peripheral address space to 64 Kbytes.

- EPI_ADDR_PER_SIZE_16MB sets the peripheral address space to 16 Mbytes.

- EPI_ADDR_PER_SIZE_256MB sets the peripheral address space to 256 Mbytes.
Peripheral base address, select one of:

- EPI_ADDR_PER_BASE_NONE sets the peripheral base address to none.

- EPI_ADDR_PER_BASE_A sets the peripheral base address to 0xA0000000.

+ EPI_ADDR_PER_BASE_C sets the peripheral base address to 0xC0000000.

RAM address space, select one of:

- EPI_ADDR_RAM_SIZE_256B sets the RAM address space to 256 bytes.

+ EPI_ADDR_RAM_SIZE_64KB sets the RAM address space to 64 Kbytes.

+ EPI_ADDR_RAM_SIZE_16MB sets the RAM address space to 16 Mbytes.

- EPI_ADDR_RAM_SIZE_256MB sets the RAM address space to 256 Mbytes.

RAM base address, select one of:

- EPI_ADDR_RAM_BASE_NONE sets the RAM space address to none.

- EPI_ADDR_RAM_BASE_6 sets the RAM space address to 0x60000000.

+ EPI_ADDR_RAM_BASE_8 sets the RAM space address to 0x80000000.
EPI_ADDR_RAM_QUAD_MODE maps CSOn to 0x60000000, CS1n to 0x80000000,
CS2n to 0xA0000000, and CS3n to 0xC0000000.

EPI_ADDR_CODE_SIZE_256B sets an external code size of 256 bytes, range 0x00 to
OxFF.

EPI_ADDR_CODE_SIZE_64KB sets an external code size of 64 Kbytes, range 0x0000 to
OxFFFF.

EPI_ADDR_CODE_SIZE_16MB sets an external code size of 16 Mbytes, range 0x000000
to OxFFFFFF.

EPI_ADDR_CODE_SIZE_256MB sets an external code size of 256 Mbytes, range
0x0000000 to OxFFFFFFF.

m EPI_ADDR_CODE_BASE_NONE sets external code base to not mapped.
m EPI_ADDR_CODE_BASE_1 sets external code base to 0x10000000.

Note:

The availability of EPI_ADDR_RAM_QUAD_MODE and EPI_ADDR_CODE_x varies based
on the Tiva part in use. Please consult the data sheet to determine if these features are
available.

Returns:
None.

EPIConfigGPModeSet

Configures the interface for general-purpose mode operation.

Prototype:
void
EPIConfigGPModeSet (uint32_t ui32Base,

uint32_t ui32Config,
uint32_t ui32FrameCount,
uint32_t ui32MaxWait)

208

February 22, 2017

External Peripheral Interface (EPI)

Parameters:
ui32Base is the EPI module base address.

ui32Config is the interface configuration.
ui32FrameCount is the frame size in clocks, if the frame signal is used (0-15).
ui32MaxWait is currently not used.

Description:
This function is used to configure the interface when used in general-purpose operation as
chosen with the function EPIModeSet(). The parameter ui32Config is the logical OR of the
following:

m EPI_GPMODE_CLKPIN interface clock as output on a pin.

m EPI_GPMODE_CLKGATE clock is stopped when there is no transaction, otherwise it is
free-running.

= EPI_GPMODE_FRAMES50 framing signal is 50/50 duty cycle, otherwise it is a pulse.

m EPI_GPMODE_WRITE2CYCLE a two-cycle write is used, otherwise a single-cycle write
is used.

m Address bus size, select one of:
+ EPI_GPMODE_ASIZE_ NONE sets no address bus.
 EPI_GPMODE_ASIZE_4 sets an address bus size of 4 bits.
+ EPI_GPMODE_ASIZE 12 sets an address bus size of 12 bits.
+ EPI_GPMODE_ASIZE_20 sets an address bus size of 20 bits.
m Data bus size, select one of:
+ EPI_GPMODE_DSIZE_8 sets a data bus size of 8 bits.
+ EPI_GPMODE_DSIZE_16 sets a data bus size of 16 bits.
* EPI_GPMODE_DSIZE_24 sets a data bus size of 24 bits.
+ EPI_GPMODE_DSIZE_32 sets a data bus size of 32 bits.

The parameter ui32FrameCount is the number of clocks used to form the framing signal, if the
framing signal is used. The behavior depends on whether the frame signal is a pulse or a 50/50
duty cycle.

Returns:
None.

11.2.2.3 EPIConfigHB16CSSet

Sets the individual chip select configuration for the Host-bus 16 interface.

Prototype:
void
EPIConfigHBl6CSSet (uint32_t ui32Base,
uint32_t ui32CS,
uint32_t ui32Config)

Parameters:
ui32Base is the EPI module base address.

ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

February 22, 2017 209

External Peripheral Interface (EPI)

Description:
This function is used to configure individual chip select settings for the Host-bus 16 interface
mode. EPIConfigHB16Set() must have been set up with the EPI_HB16_CSBAUD flag for the
individual chip select configuration option to be available.

The ui32Base parameter is the base address for the EPI| hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR the following:

m Host-bus 16 submode, select one of:
« EPI_HB16_MODE_ADMUX sets data and address muxed, AD[15:0].
+ EPI_HB16_MODE_ADDEMUX sets up data and address separate, D[15:0].

+ EPI_HB16_MODE_SRAM same as EPI_HB8_MODE_ADDEMUX, but uses address
switch for multiple reads instead of OEn strobing, D[15:0].

« EPI_HB16_MODE_FIFO adds XFIFO with sense of XFIFO full and XFIFO empty,
D[15:0]. This feature is only available on CSOn and CS1n.

EPI_HB16_WRHIGH sets active high write strobe, otherwise it is active low.
EPI_HB16_RDHIGH sets active high read strobe, otherwise it is active low.
Write wait state when EPI_HB16_BAUD is used, select one of:

+ EPI_HB16_WRWAIT_O0 sets write wait state to 2 EPI clocks (default).

« EPI_HB16_WRWAIT_1 sets write wait state to 4 EPI clocks.

« EPI_HB16_WRWAIT_2 sets write wait state to 6 EPI clocks.

+ EPI_HB16_WRWAIT_3 sets write wait state to 8 EPI clocks.
Read wait state when EPI_HB16_BAUD is used, select one of:

- EPI_HB16_RDWAIT_0 sets read wait state to 2 EPI clocks (default).

- EPI_HB16_RDWAIT_1 sets read wait state to 4 EPI clocks.

- EPI_HB16_RDWAIT_2 sets read wait state to 6 EPI clocks.

« EPI_HB16_RDWAIT_3 sets read wait state to 8 EPI clocks.
EPI_HB16_ALE_HIGH sets the address latch active high (default).
EPI_HB16_ALE_LOW sets address latch active low.

EPI_HB16_BURST _TRAFFIC enables burst traffic. Only valid with
EPI_HB16_MODE_ADMUX and a chip select configuration that utilizes an ALE.

Note:
The availability of the unique chip select configuration within the Host-bus 16 interface mode
varies based on the Tiva part in use. Please consult the data sheet to determine if this feature
is available.

Returns:
None.

11.2.2.4 EPIConfigHB16Set

Configures the interface for Host-bus 16 operation.

Prototype:
void
EPIConfigHBl6Set (uint32_t ui32Base,
uint32_t ui32Config,
uint32_t ui32MaxWait)

210 February 22, 2017

External Peripheral Interface (EPI)

Parameters:
ui32Base is the EPI module base address.

ui32Config is the interface configuration.

ui32MaxWait is the maximum number of external clocks to wait if a FIFO ready signal is
holding off the transaction.

Description:
This function is used to configure the interface when used in Host-bus 16 operation as chosen
with the function EPIModeSet(). The parameter ui32Config is the logical OR of the following:

m Host-bus 16 submode, select one of:
 EPI_HB16_MODE_ADMUX sets data and address muxed, AD[15:0].
+ EPI_HB16_MODE_ADDEMUX sets up data and address as separate, D[15:0].

+ EPI_HB16_MODE_SRAM sets as EPI_HB16_MODE_ADDEMUX but uses address
switch for multiple reads instead of OEn strobing, D[15:0].

+ EPI_HB16_MODE_FIFO addes XFIFO controls with sense of XFIFO full and XFIFO
empty, D[15:0]. This submode uses no address or ALE.

EPI_HB16_USE_TXEMPTY enables TXEMPTY signal with FIFO.
EPI_HB16_USE_RXFULL enables RXFULL signal with FIFO.
EPI_HB16_WRHIGH use active high write strobe, otherwise it is active low.
EPI_HB16_RDHIGH use active high read strobe, otherwise it is active low.
Write wait state, select one of:

EPI_HB16_WRWAIT_0 sets write wait state to 2 EPI clocks.
EPI_HB16_WRWAIT _1 sets write wait state to 4 EPI clocks.
EPI_HB16_WRWAIT 2 sets write wait state to 6 EPI clocks.
EPI_HB16_WRWAIT_3 sets write wait state to 8 EPI clocks.

Read wait state, select one of:
- EPI_HB16_RDWAIT_0 sets read wait state to 2 EPI clocks.
- EPI_HB16_RDWAIT_1 sets read wait state to 4 EPI clocks.
 EPI_HB16_RDWAIT_2 sets read wait state to 6 EPI clocks.
- EPI_HB16_RDWAIT_3 sets read wait state to 8 EPI clocks.

EPI_HB16_WORD_ACCESS use Word Access mode to route bytes to the correct byte
lanes allowing data to be stored in bits [31:16]. If absent, all data transfers use bits [15:0].

Note:
EPI_HB16_WORD_ACCESS is not available on all parts. Please consult the data sheet to
determine if this feature is available.

m EPI_HB16_CLOCK_GATE_IDLE holds the EPI clock low when no data is available to read or
write.

m EPI_HB16_CLOCK_INVERT inverts the EPI clock.

= EPI_HB16_IN_READY_EN sets EPIS032 as a ready/stall signal, active high.

m EPI_HB16_IN_READY_EN_INVERTED sets EPIS032 as ready/stall signal, active low.
m Address latch logic, select one of:

» EPI_HB16_ALE_HIGH sets the address latch active high (default).
* EPI_HB16_ALE_LOW sets address latch active low.

February 22, 2017 211

External Peripheral Interface (EPI)

m EPI_HB16_BURST_TRAFFIC enables burst traffic. Only valid with
EPI_HB16_MODE_ADMUX and a chip select configuration that utilizes an ALE.

m EPI_HB16_BSEL enables byte selects. In this mode, two EPI signals operate as byte selects
allowing 8-bit transfers. If this flag is not specified, data must be read and written using only
16-bit transfers.

m EPI_HB16_CSBAUD use different baud rates when accessing devices on each chip select.
CSO0n uses the baud rate specified by the lower 16 bits of the divider passed to EPIDividerSet()
and CS1n uses the divider passed in the upper 16 bits. If this option is absent, both chip
selects use the baud rate resulting from the divider in the lower 16 bits of the parameter
passed to EPIDividerSet().

In addition, some parts support CS2n and CS3n for a total of 4 chip selects. If EPI_HB16_CSBAUD
is configured, EPIDividerCSSet() should be used to to configure the divider for CS2n and CS3n.
They both also use the lower 16 bits passed to EPIDividerSet() if this option is absent.

The use of EPI_HB16_CSBAUD also allows for unique chip select configurations. CS0n, CS1n,
CS2n, and CS3n can each be configured by calling EPIConfigHB16CSSet() if EPI_HB16_CSBAUD
is used. Otherwise, the configuration provided in ui32Config is used for all chip selects.

m Chip select configuration, select one of:

» EPI_HB16_CSCFG_CS sets EPIS030 to operate as a chip select signal.

» EPI_HB16_CSCFG_ALE sets EPIS030 to operate as an address latch (ALE).

* EPI_HB16_CSCFG_DUAL_CS sets EPIS030 to operate as CS0n and EPIS027 as CS1n
with the asserted chip select determined from the most significant address bit for the
respective external address map.

» EPI_HB16_CSCFG_ALE_DUAL_CS sets EPIS030 as an address latch (ALE), EPIS027
as CSOn and EPIS026 as CS1n with the asserted chip select determined from the most
significant address bit for the respective external address map.

* EPI_HB16_CSCFG_ALE_SINGLE_CS sets EPIS030 to operate as an address latch
(ALE) and EPIS027 is used as a chip select.

« EPI_HB16_CSCFG_QUAD_CS sets EPIS030 as CSOn, EPIS027 as CS1n, EPIS034 as
CS2n and EPIS033 as CS3n.

* EPI_HB16_CSCFG_ALE_QUAD_CS sets EPIS030 as an address latch (ALE), EPIS026
as CSO0n, EPIS027 as CS1n, EPIS034 as CS2n and EPIS033 as CS3n.

Note:
Dual or quad chip select configurations cannot be wused with
EPI_HB16_MODE_SRAM.
The parameter ui32MaxWait is used if the FIFO mode is chosen. If a FIFO is used along
with RXFULL or TXEMPTY ready signals, then this parameter determines the maximum
number of clocks to wait when the transaction is being held off by by the FIFO using one
of these ready signals. A value of 0 means to wait forever.

Note:
Availability of configuration options varies based on the Tiva part in use. Please consult the
data sheet to determine if the features desired are available.

Returns:
None.

212

February 22, 2017

External Peripheral Interface (EPI)

11.2.2.5 EPIConfigHB16TimingSet

Sets the individual chip select timing settings for the Host-bus 16 interface.

Prototype:
void
EPIConfigHBl6TimingSet (uint32_t ui32Base,
uint32_t ui32CSs,
uint32_t ui32Config)

Parameters:
ui32Base is the EPI module base address.

ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

Description:
This function is used to set individual chip select timings for the Host-bus 16 interface mode.

The ui32Base parameter is the base address for the EPI| hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR of the following:

m Input ready stall delay, select one of:

 EPI_HB16_IN_READY_DELAY_1 sets the stall on input ready (EP1S032) to start 1
EPI clock after signaled.

+ EPI_HB16_IN_READY_DELAY_2 sets the stall on input ready (EPIS032) to start 2
EPI clocks after signaled.

* EPI_HB16_IN_READY_DELAY_3 sets the stall on input ready (EPIS032) to start 3
EPI clocks after signaled.

m PSRAM size limitation, select one of:

 EPI_HB16_PSRAM_NO_LIMIT defines no row size limitation.

+ EPI_HB16_PSRAM_128 defines the PSRAM row size to 128 bytes.

» EPI_HB16_PSRAM_256 defines the PSRAM row size to 256 bytes.

» EPI_HB16_PSRAM_512 defines the PSRAM row size to 512 bytes.

+ EPI_HB16_PSRAM_1024 defines the PSRAM row size to 1024 bytes.
+ EPI_HB16_PSRAM_2048 defines the PSRAM row size to 2048 bytes.
+ EPI_HB16_PSRAM_4096 defines the PSRAM row size to 4096 bytes.
* EPI_HB16_PSRAM_8192 defines the PSRAM row size to 8192 bytes.

m Host bus transfer delay, select one of:

» EPI_HB16_CAP_WIDTH_1 defines the inter-transfer capture width to create a delay
of 1 EPI clock

- EPI_HB16_CAP_WIDTH_2 defines the inter-transfer capture width to create a delay
of 2 EPI clocks.

m Write wait state timing reduction, select one of:

« EPI_HB16_WRWAIT_MINUS_ DISABLE disables the additional write wait state reduc-
tion.

+ EPI_HB16_WRWAIT_MINUS_ENABLE enables a 1 EPI clock write wait state reduc-
tion.

February 22, 2017 213

External Peripheral Interface (EPI)

m Read wait state timing reduction, select one of:

« EPI_HB16_RDWAIT_MINUS_DISABLE disables the additional read wait state reduc-
tion.

+ EPI_HB16_RDWAIT_MINUS_ENABLE enables a 1 EPI clock read wait state reduc-
tion.

Note:
The availability of unique chip select timings within Host-bus 16 interface mode varies based
on the Tiva part in use. Please consult the data sheet to determine if this feature is available.

Returns:
None.

11.2.2.6 EPIConfigHB8CSSet

Sets the individual chip select configuration for the Host-bus 8 interface.

Prototype:
void
EPIConfigHB8CSSet (uint32_t ui32Base,
uint32_t ui32Cs,
uint32_t ui32Configqg)

Parameters:
ui32Base is the EPl module base address.

ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

Description:
This function is used to configure individual chip select settings for the Host-bus 8 interface
mode. EPIConfigHB8Set() must have been setup with the EPI_HB8_CSBAUD flag for the
individual chip select configuration option to be available.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR of the following:

m Host-bus 8 submode, select one of:
+ EPI_HB8_MODE_ADMUX sets data and address muxed, AD[7:0].
+ EPI_HB8 _MODE_ADDEMUX sets up data and address separate, D[7:0].

+ EPI_HB8 _MODE_SRAM as EPI_HB8 _MODE_ADDEMUX, but uses address switch
for multiple reads instead of OEn strobing, D[7:0].

+ EPI_HB8 MODE_FIFO adds XFIFO with sense of XFIFO full and XFIFO empty,
D[7:0]. This is only available for CSOn and CS1n.

m EPI_HB8_WRHIGH sets active high write strobe, otherwise it is active low.
m EPI_HB8_RDHIGH sets active high read strobe, otherwise it is active low.
m Write wait state when EPI_HB8_BAUD is used, select one of:

- EPI_HB8_ WRWAIT_0 sets write wait state to 2 EPI clocks (default).

- EPI_HB8 WRWAIT_1 sets write wait state to 4 EPI clocks.

- EPI_HB8 WRWAIT_2 sets write wait state to 6 EPI clocks.

214 February 22, 2017

External Peripheral Interface (EPI)

11.2.2.7

« EPI_HB8_ WRWAIT_3 sets write wait state to 8 EPI clocks.
m Read wait state when EPI_HB8_BAUD is used, select one of:
- EPI_HB8_RDWAIT_0 sets read wait state to 2 EPI clocks (default).
- EPI_HB8 RDWAIT_1 sets read wait state to 4 EPI clocks.
- EPI_HB8 RDWAIT_2 sets read wait state to 6 EPI clocks.
- EPI_HB8 RDWAIT_3 sets read wait state to 8 EPI clocks.
m EPI_HB8_ALE_HIGH sets the address latch active high (default).
m EPI_HB8_ALE_LOW sets address latch active low.

Note:
The availability of a unique chip select configuration within Host-bus 8 interface mode varies
based on the Tiva part in use. Please consult the data sheet to determine if this feature is
available.

Returns:
None.

EPIConfigHB8Set

Configures the interface for Host-bus 8 operation.

Prototype:
void
EPIConfigHB8Set (uint32_t ui32Base,
uint32_t ui32Config,
uint32_t ui32MaxWait)

Parameters:
ui32Base is the EPI module base address.

ui32Config is the interface configuration.

ui32MaxWait is the maximum number of external clocks to wait if a FIFO ready signal is
holding off the transaction, 0-255.

Description:
This function is used to configure the interface when used in host-bus 8 operation as chosen
with the function EPIModeSet(). The parameter ui32Config is the logical OR of the following:

m Host-bus 8 submode, select one of:
+ EPI_HB8_MODE_ADMUX sets data and address muxed, AD[7:0]
+ EPI_HB8_MODE_ADDEMUX sets up data and address separate, D[7:0]

- EPI_HB8 _MODE_SRAM as EPI_HB8 _MODE_ADDEMUX, but uses address switch
for multiple reads instead of OEn strobing, D[7:0]

« EPI_HB8_MODE_FIFO adds XFIFO with sense of XFIFO full and XFIFO empty, D[7:0]

EPI_HB8_USE_TXEMPTY enables TXEMPTY signal with FIFO
EPI_HB8_USE_RXFULL enables RXFULL signal with FIFO
EPI_HB8_WRHIGH sets active high write strobe, otherwise it is active low
EPI_HB8_RDHIGH sets active high read strobe, otherwise it is active low

Write wait state when EPI_HB8 BAUD is used, select one of:

February 22, 2017 215

External Peripheral Interface (EPI)

- EPI_HB8_WRWAIT_0 sets write wait state to 2 EPI clocks (default)
« EPI_HB8_ WRWAIT_1 sets write wait state to 4 EPI clocks
+ EPI_HB8 WRWAIT_2 sets write wait state to 6 EPI clocks
- EPI_HB8_ WRWAIT_3 sets write wait state to 8 EPI clocks

Read wait state when EPI_HB8_BAUD is used, select one of:
- EPI_HB8_ RDWAIT_0 sets read wait state to 2 EPI clocks (default)
- EPI_HB8 RDWAIT_1 sets read wait state to 4 EPI clocks
+ EPI_HB8_RDWAIT_2 sets read wait state to 6 EPI clocks
+ EPI_HB8_ RDWAIT_3 sets read wait state to 8 EPI clocks

EPI_HB8_WORD_ACCESS - use Word Access mode to route bytes to the correct byte
lanes allowing data to be stored in bits [31:8]. If absent, all data transfers use bits [7:0].

EPI_HB8_CLOCK_GATE_IDLE sets the EPI clock to be held low when no data is avail-
able to read or write

EPI_HB8_CLOCK_INVERT inverts the EPI clock

EPI_HB8_IN_READY_EN sets EPIS032 as a ready/stall signal, active high
EPI_HB8_IN_READY_EN_INVERT sets EPIS032 as ready/stall signal, active low
EPI_HB8_ALE_HIGH sets the address latch active high (default)

EPI_HB8_ALE_LOW sets address latch active low

EPI_HB8_CSBAUD use different baud rates when accessing devices on each chip select.
CSOn uses the baud rate specified by the lower 16 bits of the divider passed to EPIDi-
viderSet() and CS1n uses the divider passed in the upper 16 bits. If this option is absent,
both chip selects use the baud rate resulting from the divider in the lower 16 bits of the
parameter passed to EPIDividerSet().

In addition, some parts support CS2n and CS3n for a total of 4 chip selects. If
EPI_HB8_CSBAUD is configured, EPIDividerCSSet() should be used to to configure the di-
vider for CS2n and CS3n. They both also use the lower 16 bits passed to EPIDividerSet() if
this option is absent.

The use of EPI_HB8_CSBAUD also allows for unique chip select configurations. CSOn,
CS1n, CS2n, and CS3n can each be configured by calling EPIConfigHB8CSSet() if
EPI_HB8_CSBAUD is used. Otherwise, the configuration provided in ui32Config is used for
all chip selects enabled.

Chip select configuration, select one of:

» EPI_HB8_CSCFG_CS sets EPIS030 to operate as a chip select signal.

» EPI_HB8_CSCFG_ALE sets EPIS030 to operate as an address latch (ALE).

» EPI_HB8_CSCFG_DUAL_CS sets EPIS030 to operate as CSOn and EPIS027 as
CS1n with the asserted chip select determined from the most significant address bit
for the respective external address map.

+ EPI_HB8 CSCFG_ALE_DUAL_CS sets EPIS030 as an address latch (ALE),
EPIS027 as CSOn and EPIS026 as CS1n with the asserted chip select determined
from the most significant address bit for the respective external address map.

» EPI_HB8 CSCFG_ALE_SINGLE_CS sets EPIS030 to operate as an address latch
(ALE) and EPIS027 is used as a chip select.

+ EPI_HB8_CSCFG_QUAD_CS sets EPIS030 as CS0n, EPIS027 as CS1n, EPIS034
as CS2n and EPIS033 as CS3n.

+ EPI_HB8 CSCFG_ALE_QUAD_CS sets EPIS030 as an address latch (ALE),
EPIS026 as CS0On, EPIS027 as CS1n, EPIS034 as CS2n and EPIS033 as CS3n.

216

February 22, 2017

External Peripheral Interface (EPI)

Note:
Dual or quad chip select configurations cannot be used with
EPI_HB8 _MODE_SRAM.

The parameter ui32MaxWait is used if the FIFO mode is chosen. If a FIFO is used
aint32_t with RXFULL or TXEMPTY ready signals, then this parameter determines the
maximum number of clocks to wait when the transaction is being held off by by the
FIFO using one of these ready signals. A value of 0 means to wait forever.

Note:
Availability of configuration options varies based on the Tiva part in use. Please consult the
data sheet to determine if the features desired are available.

Returns:
None.

11.2.2.8 EPIConfigHB8TimingSet

Sets the individual chip select timing settings for the Host-bus 8 interface.

Prototype:
void
EPIConfigHB8TimingSet (uint32_t ui32Base,
uint32_t ui32cCs,
uint32_t ui32Configqg)

Parameters:
ui32Base is the EPl module base address.

ui32CS is the chip select value to configure.
ui32Config is the configuration settings.

Description:
This function is used to set individual chip select timings for the Host-bus 8 interface mode.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
ui32Config is the logical OR of the following:

m Input ready stall delay, select one of:
- EPI_HB8_IN_READY_DELAY_1 sets the stall on input ready (EPIS032) to start 1 EPI
clock after signaled.
- EPI_HB8_IN_READY_DELAY_2 sets the stall on input ready (EP1S032) to start 2 EPI
clocks after signaled.

« EPI_HB8_IN_READY_DELAY_3 sets the stall on input ready (EP1S032) to start 3 EPI
clocks after signaled.

m Host bus transfer delay, select one of:

- EPI_HB8_CAP_WIDTH_1 defines the inter-transfer capture width to create a delay of
1 EPI clock.

+ EPI_HB8_CAP_WIDTH_2 defines the inter-transfer capture width to create a delay of
2 EPI clocks.

= EPI_HB8_WRWAIT_MINUS_DISABLE disables the additional write wait state reduction.

February 22, 2017 217

External Peripheral Interface (EPI)

11.2.2.9

= EPI_HB8 _WRWAIT_MINUS_ENABLE enables a 1 EPI clock write wait state reduction.
= EPI_HB8_RDWAIT_MINUS_DISABLE disables the additional read wait state reduction.
= EPI_HB8_RDWAIT_MINUS_ENABLE enables a 1 EPI clock read wait state reduction.

Note:
The availability of unique chip select timings within Host-bus 8 interface mode varies based on
the Tiva part in use. Please consult the data sheet to determine if this feature is available.

Returns:
None.

EPIConfigSDRAMSet

Configures the SDRAM mode of operation.
Prototype:

void

EPIConfigSDRAMSet (uint32_t ui32Base,
uint32_t ui32Config,
uint32_t ui32Refresh)

Parameters:
ui32Base is the EPl module base address.
ui32Config is the SDRAM interface configuration.
ui32Refresh is the refresh count in core clocks (0-2047).

Description:
This function is used to configure the SDRAM interface, when the SDRAM mode is chosen
with the function EPIModeSet(). The parameter ui32Config is the logical OR of several sets of
choices:

The processor core frequency must be specified with one of the following:

EPI_SDRAM_CORE_FREQ_0_15 defines core clock as 0 MHz < clk <= 15 MHz
EPI_SDRAM_CORE_FREQ_15 30 defines core clock as 15 MHz < clk <= 30 MHz
EPI_SDRAM_CORE_FREQ_30_50 defines core clock as 30 MHz < clk <= 50 MHz
EPI_SDRAM_CORE_FREQ_50_ 100 defines core clock as 50 MHz < clk <= 100 MHz

The low power mode is specified with one of the following:

m EPI_SDRAM_LOW_POWER enter low power, self-refresh state.
= EPI_SDRAM_FULL_POWER normal operating state.

The SDRAM device size is specified with one of the following:

EPI_SDRAM_SIZE_64MBIT size is a 64 Mbit device (8 MB).

EPI_SDRAM_SIZE_128MBIT size is a 128 Mbit device (16 MB).
EPI_SDRAM_SIZE_256MBIT size is a 256 Mbit device (32 MB).
EPI_SDRAM_SIZE_512MBIT size is a 512 Mbit device (64 MB).

The parameter ui16Refresh sets the refresh counter in units of core clock ticks. It is an 11-bit
value with a range of 0 - 2047 counts.

Returns:
None.

218

February 22, 2017

External Peripheral Interface (EPI)

11.2.2.10 EPIDividerCSSet

11.2.2.11

Sets the clock divider for the specified CS in the EPl module.

Prototype:
void
EPIDividerCSSet (uint32_t ui32Base,
uint32_t ui32CSs,
uint32_t ui32Divider)

Parameters:
ui32Base is the EPl module base address.
ui32CS is the chip select to modify and has a valid range of 0-3.
ui32Divider is the value of the clock divider to be applied to the external interface (0-65535).

Description:
This function sets the clock divider(s) for the specified CS that is used to determine the clock
rate of the external interface. The ui32Divider value is used to derive the EPI clock rate from
the system clock based on the following formula.

EPICIk = (Divider == 0) ? SysClk : (SysClk / (((Divider / 2) + 1) % 2))

For example, a divider value of 1 results in an EPI clock rate of half the system clock, value of
2 or 3 yields one quarter of the system clock and a value of 4 results in one sixth of the system
clock rate.

Note:
The availability of CS2n and CS3n varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
None.

EPIDividerSet

Sets the clock divider for the EPl module’s CS0On/CS1n.

Prototype:
void
EPIDividerSet (uint32_t ui32Base,
uint32_t ui32Divider)

Parameters:
ui32Base is the EPl module base address.

ui32Divider is the value of the clock divider to be applied to the external interface (0-65535).

Description:
This function sets the clock divider(s) that is used to determine the clock rate of the external
interface. The ui32Divider value is used to derive the EPI clock rate from the system clock
based on the following formula.

EPICIk = (Divider == 0) ? SysClk : (SysClk / (((Divider / 2) + 1) « 2))

February 22, 2017 219

External Peripheral Interface (EPI)

For example, a divider value of 1 results in an EPI clock rate of half the system clock, value of
2 or 3 yields one quarter of the system clock and a value of 4 results in one sixth of the system
clock rate.

In cases where a dual chip select mode is in use and different clock rates are required for each
chip select, the ui32Divider parameter must contain two dividers. The lower 16 bits define the
divider to be used with CS0n and the upper 16 bits define the divider for CS1n.

Returns:
None.

11.2.2.12 EPIDMATxCount

Sets the transfer count for uDMA transmit operations on EPI.

Prototype:

void
EPIDMATxCount (uint32_t ui32Base,
uint32_t ui32Count)

Parameters:
ui32Base is the EPl module base address.

ui32Count is the number of units to transmit by uDMA to WRFIFO.

Description:
This function is used to help configure the EPI uDMA transmit operations. A non-zero transmit
count in combination with a FIFO threshold trigger asserts an EPl uDMA transmit.

Note that, although the EPI peripheral can handle counts of up to 65535, a single uDMA
transfer has a maximum length of 1024 units so ui32Count should be set to values less than
or equal to 1024.

Note:
The availability of the EPI DMA TX count varies based on the Tiva part in use. Please consult
the data sheet to determine if this feature is available.

Returns:
None.

11.2.2.13 EPIFIFOConfig

Configures the read FIFO.

Prototype:
void
EPIFIFOConfig(uint32_t ui32Base,
uint32_t ui32Config)

Parameters:
ui32Base is the EPI module base address.

ui32Config is the FIFO configuration.

220 February 22, 2017

External Peripheral Interface (EPI)

Description:
This function configures the FIFO trigger levels and error generation. The parameter
ui32Config is the logical OR of the following:

m EPI_FIFO_CONFIG_WTFULLERR enables an error interrupt when a write is attempted
and the write FIFO is full

m EPI_FIFO_CONFIG_RSTALLERR enables an error interrupt when a read is stalled due
to an interleaved write or other reason

m FIFO TX trigger level, select one of:

* EPI_FIFO_CONFIG_TX_EMPTY sets the FIFO TX trigger level to empty.

* EPI_FIFO_CONFIG_TX_1_4 sets the FIFO TX trigger level to 1/4.

* EPI_FIFO_CONFIG_TX_1_2 sets the FIFO TX trigger level to 1/2.

« EPI_FIFO_CONFIG_TX_3_4 sets the FIFO TX trigger level to 3/4.
m FIFO RX trigger level, select one of:
EPI_FIFO_CONFIG_RX_1_8 sets the FIFO RX trigger level to 1/8.
EPI_FIFO_CONFIG_RX_1_4 sets the FIFO RX trigger level to 1/4.
EPI_FIFO_CONFIG_RX_1_2 sets the FIFO RX trigger level to 1/2.
EPI_FIFO_CONFIG_RX_3_4 sets the FIFO RX trigger level to 3/4.
EPI_FIFO_CONFIG_RX_7_8 sets the FIFO RX trigger level to 7/8.
EPI_FIFO_CONFIG_RX_FULL sets the FIFO RX trigger level to full.

Returns:
None.

11.2.2.14 EPIIntDisable

Disables EPI interrupt sources.

Prototype:
void
EPIIntDisable (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the EPl module base address.

ui32IntFlags is a bit mask of the interrupt sources to be disabled.

Description:
This function disables the specified EPI sources for interrupt generation. The ui32IntFlags
parameter can be the logical OR of any of the following values:

EPL_INT_TXREQ interrupt when transmit FIFO is below the trigger level.
EPL_INT_RXREQ interrupt when read FIFO is above the trigger level.
EPIL_INT_ERR interrupt when an error condition occurs.
EPL_INT_DMA_TX_DONE interrupt when the transmit DMA completes.
EPL_INT_DMA_RX_DONE interrupt when the read DMA completes.

Returns:
Returns None.

February 22, 2017 221

External Peripheral Interface (EPI)

11.2.2.15 EPIlIntEnable

Enables EPI interrupt sources.

Prototype:
void
EPIIntEnable (uint32_t ui32Base,
uint32_t ui32IntFlags)

Parameters:
ui32Base is the EPl module base address.

ui32IntFlags is a bit mask of the interrupt sources to be enabled.

Description:
This function enables the specified EPI sources to generate interrupts. The ui32IntFlags pa-
rameter can be the logical OR of any of the following values:

EPI_INT_TXREQ interrupt when transmit FIFO is below the trigger level.
EPI_INT_RXREQ interrupt when read FIFO is above the trigger level.
EPL_INT_ERR interrupt when an error condition occurs.
EPL_INT_DMA_TX_DONE interrupt when the transmit DMA completes.
EPIL_INT_DMA_RX_DONE interrupt when the read DMA completes.

Returns:
Returns None.

11.2.2.16 EPIlIntErrorClear

Clears pending EPI error sources.

Prototype:
void
EPIIntErrorClear (uint32_t ui32Base,
uint32_t ui32ErrFlags)

Parameters:
ui32Base is the EPl module base address.

Ui32ErrFlags is a bit mask of the error sources to be cleared.

Description:
This function clears the specified pending EPI errors. The ui32ErrFlags parameter can be the
logical OR of any of the following values:

EPIL_INT_ERR_DMAWRIC clears the EPI_INT_DMA_TX_DONE as an interrupt source
EPI_INT_ERR_DMARDIC clears the EPI_INT_DMA_RX_DONE as an interrupt source
EPIL_INT_ERR_WTFULL occurs when a write stalled when the transaction FIFO was full
EPI_INT_ERR_RSTALL occurs when a read stalled

EPL_INT_ERR_TIMEOUT occurs when the external clock enable held off a transaction
longer than the configured maximum wait time

Returns:
Returns None.

222 February 22, 2017

External Peripheral Interface (EPI)

11.2.2.17 EPIlIntErrorStatus

Gets the EPI error interrupt status.

Prototype:
uint32_t
EPIIntErrorStatus (uint32_t ui32Base)

Parameters:
ui32Base is the EPI module base address.

Description:
This function returns the error status of the EPI. If the return value of the function EPIIntStatus()
has the flag EPI_INT_ERR set, then this function can be used to determine the cause of the
error.

Returns:
Returns a bit mask of error flags, which can be the logical OR of any of the following:

m EPI_INT_ERR_WTFULL occurs when a write stalled when the transaction FIFO was full
m EPI_INT_ERR_RSTALL occurs when a read stalled

m EPI_INT_ERR_TIMEOUT occurs when the external clock enable held off a transaction longer
than the configured maximum wait time

11.2.2.18 EPIIntRegister

Registers an interrupt handler for the EPl module.

Prototype:
void
EPIIntRegister (uint32_t ui32Base,
void (xpfnHandler) (void))

Parameters:
ui32Base is the EPl module base address.

pfnHandler is a pointer to the function to be called when the interrupt is activated.

Description:
This sets and enables the handler to be called when the EPI module generates an interrupt.
Specific EPI interrupts must still be enabled with the EPlIntEnable() function.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

February 22, 2017 223

External Peripheral Interface (EPI)

11.2.2.19 EPIlIntStatus

Gets the EPl interrupt status.

Prototype:
uint32_t
EPIIntStatus (uint32_t ui32Base,
bool bMasked)

Parameters:
ui32Base is the EPI module base address.

bMasked is set true to get the masked interrupt status, or false to get the raw interrupt status.

Description:
This function returns the EPI interrupt status. It can return either the raw or masked interrupt
status.

Returns:
Returns the masked or raw EPI interrupt status, as a bit field of any of the following values:

m EPI_INT_TXREQ interrupt when transmit FIFO is below the trigger level.
EPL_INT_RXREQ interrupt when read FIFO is above the trigger level.
EPL_INT_ERR interrupt when an error condition occurs.
EPL_INT_DMA_TX_DONE interrupt when the transmit DMA completes.
EPIL_INT_DMA_RX_DONE interrupt when the read DMA completes.

11.2.2.20 EPIIntUnregister

Removes a registered interrupt handler for the EPl module.

Prototype:
void
EPIIntUnregister (uint32_t ui32Base)

Parameters:
ui32Base is the EPl module base address.

Description:
This function disables and clears the handler to be called when the EPI interrupt occurs.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

224 February 22, 2017

External Peripheral Interface (EPI)

11.2.2.21 EPIModeSet

Sets the usage mode of the EPI module.

Prototype:

void
EPIModeSet (uint32_t ui32Base,
uint32_t ui32Mode)

Parameters:
ui32Base is the EPl module base address.

ui32Mode is the usage mode of the EPI module.

Description:
This functions sets the operating mode of the EPI module. The parameter ui32Mode must be
one of the following:

EPI_MODE_GENERAL - use for general-purpose mode operation
EPI_MODE_SDRAM - use with SDRAM device

EPI_MODE_HBS - use with host-bus 8-bit interface
EPI_MODE_HB16 - use with host-bus 16-bit interface
EPI_MODE_DISABLE - disable the EPI module

Selection of any of the above modes enables the EPI module, except for
EPI_MODE_DISABLE, which is used to disable the module.

Returns:
None.

11.2.2.22 EPINonBlockingReadAvail

Get the count of items available in the read FIFO.

Prototype:
uint32_t
EPINonBlockingReadAvail (uint32_t ui32Base)

Parameters:
ui32Base is the EPl module base address.

Description:
This function gets the number of items that are available to read in the read FIFO. The read
FIFO is filled by a non-blocking read transaction which is configured by the functions EPINon-
BlockingReadConfigure() and EPINonBlockingReadStart().

Returns:
The number of items available to read in the read FIFO.

February 22, 2017 225

External Peripheral Interface (EPI)

11.2.2.23 EPINonBlockingReadConfigure

Configures a non-blocking read transaction.

Prototype:
void
EPINonBlockingReadConfigure (uint32_t ui32Base,
uint32_t ui32Channel,
uint32_t ui32DataSize,
uint32_t ui32Address)

Parameters:
ui32Base is the EPl module base address.
ui32Channel is the read channel (0 or 1).
ui32DataSize is the size of the data items to read.
ui32Address is the starting address to read.

Description:
This function is used to configure a non-blocking read channel for a transaction. Two channels
are available that can be used in a ping-pong method for continuous reading. It is not necessary
to use both channels to perform a non-blocking read.

The parameter ui8DataSize is one of EPI_NBCONFIG_SIZE_8, EPI_NBCONFIG_SIZE_16,
or EPI_NBCONFIG_SIZE_32 for 8-bit, 16-bit, or 32-bit sized data transfers.

The parameter ui32Address is the starting address for the read, relative to the external device.
The start of the device is address 0.

Once configured, the non-blocking read is started by calling EPINonBlockingReadStart(). If the
addresses to be read from the device are in a sequence, it is not necessary to call this function
multiple times. Until it is changed, the EPI module stores the last address that was used for a
non-blocking read (per channel).

Returns:
None.

11.2.2.24 EPINonBlockingReadCount

Get the count remaining for a non-blocking transaction.

Prototype:
uint32_t
EPINonBlockingReadCount (uint32_t ui32Base,
uint32_t ui32Channel)

Parameters:
ui32Base is the EPI module base address.
ui32Channel is the read channel (0 or 1).

Description:
This function gets the remaining count of items for a non-blocking read transaction.

Returns:
The number of items remaining in the non-blocking read transaction.

226 February 22, 2017

External Peripheral Interface (EPI)

11.2.2.25 EPINonBlockingReadGet16

Read available data from the read FIFO, as 16-bit data items.

Prototype:
uint32_t
EPINonBlockingReadGet1l6 (uint32_t ui32Base,
uint32_t ui32Count,
uintl6_t xpuil6Buf)

Parameters:
ui32Base is the EPl module base address.
ui32Count is the maximum count of items to read.
pui16Buf is the caller-supplied buffer where the read data is stored.

Description:
This function reads 16-bit data items from the read FIFO and stores the values in a caller-
supplied buffer. The function reads and stores data from the FIFO until there is no more data
in the FIFO or the maximum count is reached as specified in the parameter ui32Count. The
actual count of items is returned.

Returns:
The number of items read from the FIFO.

11.2.2.26 EPINonBlockingReadGet32

Read available data from the read FIFO, as 32-bit data items.

Prototype:
uint32_t
EPINonBlockingReadGet32 (uint32_t ui32Base,
uint32_t ui32Count,
uint32_t xpui32Buf)

Parameters:
ui32Base is the EPl module base address.
ui32Count is the maximum count of items to read.
pui32Buf is the caller supplied buffer where the read data is stored.

Description:
This function reads 32-bit data items from the read FIFO and stores the values in a caller-
supplied buffer. The function reads and stores data from the FIFO until there is no more data
in the FIFO or the maximum count is reached as specified in the parameter ui32Count. The
actual count of items is returned.

Returns:
The number of items read from the FIFO.

February 22, 2017 227

External Peripheral Interface (EPI)

11.2.2.27 EPINonBlockingReadGet8

Read available data from the read FIFO, as 8-bit data items.

Prototype:
uint32_t
EPINonBlockingReadGet8 (uint32_t ui32Base,
uint32_t ui32Count,
uint8_t *pui8Buf)

Parameters:
ui32Base is the EPI module base address.

ui32Count is the maximum count of items to read.
pui8Buf is the caller-supplied buffer where the read data is stored.

Description:
This function reads 8-bit data items from the read FIFO and stores the values in a caller-
supplied buffer. The function reads and stores data from the FIFO until there is no more data
in the FIFO or the maximum count is reached as specified in the parameter ui32Count. The
actual count of items is returned.

Returns:
The number of items read from the FIFO.

11.2.2.28 EPINonBlockingReadStart

Starts a non-blocking read transaction.

Prototype:
void
EPINonBlockingReadStart (uint32_t ui32Base,
uint32_t ui32Channel,
uint32_t ui32Count)

Parameters:
ui32Base is the EPl module base address.

ui32Channel is the read channel (0 or 1).
ui32Count is the number of items to read (1-4095).

Description:
This function starts a non-blocking read that was previously configured with the function
EPINonBlockingReadConfigure(). Once this function is called, the EPI module begins read-
ing data from the external device into the read FIFO. The EPI stops reading when the FIFO fills
up and resumes reading when the application drains the FIFO, until the total specified count of
data items has been read.

Once a read transaction is completed and the FIFO drained, another transaction can be started
from the next address by calling this function again.

Returns:
None.

228 February 22, 2017

External Peripheral Interface (EPI)

11.2.2.29 EPINonBlockingReadStop

Stops a non-blocking read transaction.

Prototype:
void
EPINonBlockingReadStop (uint32_t ui32Base,
uint32_t ui32Channel)

Parameters:
ui32Base is the EPl module base address.

ui32Channel is the read channel (0 or 1).

Description:
This function cancels a non-blocking read transaction that is already in progress.

Returns:
None.

11.2.2.30 EPIPSRAMConfigRegGet

Retrieves the contents of the EPI PSRAM configuration register.

Prototype:
uint32_t
EPIPSRAMConfigRegGet (uint32_t ui32Base,
uint32_t ui32CS)

Parameters:
ui32Base is the EPl module base address.

ui32CS is the chip select target.

Description:
This function retrieves the EPI PSRAM configuration register. The register is read once the
EPI PSRAM configuration register read enable signal is de-asserted.

The Host-bus 16 interface mode should be set up and EPIPSRAMConfigRegRead() should be
called prior to calling this function.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
none.

February 22, 2017 229

External Peripheral Interface (EPI)

11.2.2.31 EPIPSRAMConfigRegGetNonBlocking

Retrieves the contents of the EPI PSRAM configuration register.

Prototype:
bool
EPIPSRAMConfigRegGetNonBlocking (uint32_t ui32Base,
uint32_t ui32CS,
uint32_t xpui32CR)

Parameters:
ui32Base is the EPl module base address.
ui32CS is the chip select target.
pui32CR is the provided storage used to hold the register value.

Description:
This function copies the contents of the EPI PSRAM configuration register to the provided
storage if the PSRAM read configuration register enable is no longer asserted. Otherwise the
provided storage is not modified.

The Host-bus 16 interface mode should be set up and EPIPSRAMConfigRegRead() should be
called prior to calling this function.

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The pui32CR
parameter is a pointer to provided storage used to hold the register value.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
true if the value was copied to the provided storage and false if it was not.

11.2.2.32 EPIPSRAMConfigRegRead

Requests a configuration register read from the PSRAM.

Prototype:
void
EPIPSRAMConfigRegRead (uint32_t ui32Base,
uint32_t ui32CS)

Parameters:
ui32Base is the EPl module base address.

ui32CS is the chip select target.

Description:
This function requests a read of the PSRAM’s configuration register. The Host-bus 16 inter-
face mode should be configured prior to calling this function. The EPIPSRAMConfigRegGet()
and EPIPSRAMConfigRegGetNonBlocking() can be used to retrieve the configuration register
value.

230

February 22, 2017

External Peripheral Interface (EPI)

The ui32Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
none.

11.2.2.33 EPIPSRAMConfigRegSet

Sets the PSRAM configuration register.

Prototype:
void
EPIPSRAMConfigRegSet (uint32_t ui32Base,
uint32_t ui32cCs,
uint32_t ui32CR)

Parameters:
ui32Base is the EPl module base address.
ui32CS is the chip select target.
ui32CR is the PSRAM configuration register value.

Description:
This function sets the PSRAM'’s configuration register by using the PSRAM configuration reg-
ister enable signal. The Host-bus 16 interface mode should be configured prior to calling this
function.

The uiB2Base parameter is the base address for the EPI hardware module. The ui32CS pa-
rameter specifies the chip select to configure and has a valid range of 0-3. The parameter
uiB2CR value is determined by consulting the PSRAM’s data sheet.

Note:
The availability of PSRAM support varies based on the Tiva part in use. Please consult the
data sheet to determine if this feature is available.

Returns:
None.

11.2.2.34 EPIWorkaroundByteRead

Safely reads a byte from the EPI 0x10000000 address space.

Prototype:
uint8_t
EPIWorkaroundByteRead (uint8_t *pui8Addr)

Parameters:
pui8Addr is the address which is to be read.

February 22, 2017 231

External Peripheral Interface (EPI)

Description:

This function must be used when reading bytes from EPI-attached memory configured to use
the address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct access to
memory in these cases can cause data corruption depending upon memory accesses immedi-
ately before or after the EPI access but using this function will allow EPI accesses to complete
correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:

The 8-bit byte stored at address pui8Addr.

11.2.2.35 EPIWorkaroundByteWrite

Safely writes a byte to the EPI 0x10000000 address space.

Prototype:

void
EPIWorkaroundByteWrite (uint8_t xpui8Addr,
uint8_t ui8Value)

Parameters:

pui8Addr is the address which is to be written.
ui8Value is the 8-bit byte to write.

Description:

This function must be used when writing bytes to EPI-attached memory configured to use the
address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct access to
memory in these cases can cause data corruption depending upon memory accesses immedi-
ately before or after the EPI access but using this function will allow EPI accesses to complete
correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:

None.

11.2.2.36 EPIWorkaroundHWordRead

Safely reads a half-word from the EP1 0x10000000 address space.

Prototype:

uintlé6_t
EPIWorkaroundHWordRead (uintl6_t xpuil6Addr)

232

February 22, 2017

External Peripheral Interface (EPI)

Parameters:

pui16Addr is the address which is to be read.

Description:

This function must be used when reading half-words from EPI-attached memory configured to
use the address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct ac-
cess to memory in these cases can cause data corruption depending upon memory accesses
immediately before or after the EPI access but using this function will allow EPI accesses to
complete correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:

11.2.2.37 EPI

The 16-bit word stored at address pui16Addr.

WorkaroundHWordWrite

Safely writes a half-word to the EPI 0x10000000 address space.

Prot

otype:

void

EPIWorkaroundHWordWrite (uintl6_t xpuil6Addr,
uintlé6_t uiléValue)

Parameters:

pui16Addr is the address which is to be written.
ui16Value is the 16-bit half-word to write.

Description:

This function must be used when writing half-words to EPI-attached memory configured to use
the address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct access to
memory in these cases can cause data corruption depending upon memory accesses immedi-
ately before or after the EPI access but using this function will allow EPI accesses to complete
correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:

11.2.2.38 EPI

None.

WorkaroundWordRead

Safely reads a word from the EPI 0x10000000 address space.

February 22, 2017

233

External Peripheral Interface (EPI)

Prototype:

uint32_t
EPIWorkaroundWordRead (uint32_t *pui32Addr)

Parameters:

pui32Addr is the address which is to be read.

Description:

This function must be used when reading words from EPIl-attached memory configured to use
the address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct access to
memory in these cases can cause data corruption depending upon memory accesses immedi-
ately before or after the EPI access but using this function will allow EPI accesses to complete
correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:

The 32-bit word stored at address pui32Addr.

11.2.2.39 EPIWorkaroundWordWrite

Safely writes a word to the EPI 0x10000000 address space.

Prototype:

void
EPIWorkaroundWordWrite (uint32_t »*pui32Addr,
uint32_t ui32vValue)

Parameters:

pui32Addr is the address which is to be written.
ui32Value is the 32-bit word to write.

Description:

This function must be used when writing words to EPI-attached memory configured to use the
address space at 0x10000000 on devices affected by the EPI#01 erratum. Direct access to
memory in these cases can cause data corruption depending upon memory accesses immedi-
ately before or after the EPI access but using this function will allow EPI accesses to complete
correctly. The function is defined as “inline” in epi.h.

Use of this function on a device not affected by the erratum is safe but will impact perfor-
mance due to an additional overhead of at least 2 cycles per access. This erratum affects only
the 0x10000000 address space typically used to store the LCD controller frame buffer. The
0x60000000 address space is not affected and applications using this address mapping need
not use this function.

Returns:

None.

234

February 22, 2017

External Peripheral Interface (EPI)

11.2.2.40 EPIWriteFIFOCountGet

11.3

Reads the number of empty slots in the write transaction FIFO.

Prototype:
uint32_t
EPIWriteFIFOCountGet (uint32_t ui32Base)

Parameters:
ui32Base is the EPI module base address.

Description:
This function returns the number of slots available in the transaction FIFO. It can be used in a
polling method to avoid attempting a write that would stall.

Returns:
The number of empty slots in the transaction FIFO.

Programming Example

This example illustrates the setup steps required to initialize the EPI to access an SDRAM when
the system clock is running at 50MHz.

//

// Enable the EPI module.

//

SysCtlPeripheralEnable (SYSCTL_PERIPH_EPIO);

//

// Wait for the EPI module to be ready.

//

while (!SysCtlPeripheralReady (SYSCTL_PERIPH_EPIO))
{

}

//

// Set the EPI divider.

//

EPIDividerSet (EPI0O_BASE, 0);
//

// Select SDRAM mode.

//

EPIModeSet (EPI0O_BASE, EPI_MODE_SDRAM) ;
//

// Configure SDRAM mode.

//

EPIConfigSDRAMSet (EPIO_BASE, (EPI_SDRAM_CORE_FREQ_50_100 |
EPI_SDRAM FULL_POWER | EPI_SDRAM_SIZE_64MBIT), 1024);

//

// Set the address map.

//

EPIAddressMapSet (EPIO_BASE, EPI_ADDR_RAM_SIZE_256MB | EPI_ADDR_RAM BASE_6);

//
// Wait for the EPI initialization to complete.

February 22, 2017 235

External Peripheral Interface (EPI)

//
while (HWREG(EPIO_BASE + EPI_O_STAT) & EPI_STAT_INITSEQ)
{
//
// Wait for SDRAM initialization to complete.
//
}

//
// At this point, the SDRAM is accessible and available for use.

//

236 February 22, 2017

Flash

12 Flash

INtrOAUCH 0N . e 237
AP FUNCHONS .o e e e e 237
Programming EXamIpIe e 246

12.1 Introduction

The flash API provides a set of functions for dealing with the on-chip flash. Functions are provided
to program and erase the flash, configure the flash protection, and handle the flash interrupt.

The flash is organized as a set of blocks that can be individually erased. See the device data sheet
to determine the size of the flash blocks on an MCU. Erasing a block causes the entire contents
of the block to be reset to all ones. The blocks can be marked as read-only or execute-only,
providing differing levels of code protection. Read-only blocks cannot be erased or programmed,
protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased
or programmed, and can only be read by the processor instruction fetch mechanism, protecting
the contents of those blocks from being read by either the processor or by debuggers. Refer to
the device data sheet to determine the size of flash blocks that can be configured as read-only or
execute-only.

The flash can be programmed on a word-by-word basis. Programming causes 1 bits to become 0
bits (where appropriate); because of this, a word can be repeatedly programmed so long as each
programming operation only requires changing 1 bits to 0 bits.

The timing for the flash is automatically handled by the flash controller. On some devices, flash
timing depends on the PLL frequency that is specified. For these devices, the SysCtlClockFregSet()
function properly configures the flash timing.

The flash controller has the ability to generate an interrupt when an invalid access is attempted
(such as reading from execute-only flash). This capability can be used to validate the operation of
a program as the interrupt ensures that invalid accesses are not silently ignored, hiding potential
bugs. The flash protection can be applied without being permanently enabled, which allows the
program to be debugged before the flash protection is permanently applied to the device (which is
a non-reversible operation on some devices). An interrupt can also be generated when an erase or
programming operation has completed.

Depending upon the member of the Tiva family used, the amount of available flash is 8 KB, 16 KB,
32 KB, 64 KB, 96 KB, 128 KB, 256 KB, 512 KB, or 1 MB.

This driver is contained in driverlib/flash.c, with driverlib/flash.h containing the API
declarations for use by applications.

12.2 API Functions

Functions

m int32_t FlashAllUserRegisterGet (uint32_t xpui32User0, uint32_t xpuid2User1, uint32_t
xpui32User2, uint32_t xpui82User3)

m int32_t FlashAllUserRegisterSave (void)

February 22, 2017 237

Flash

12.2.1

12.2.2

12.2.2.1

m int32_t FlashAllUserRegisterSet (uint32_t ui32User0, uint32_t ui32User1, uint32_t ui32User2,
uint32_t ui32User3)

int32_t FlashErase (uint32_t ui32Address)

void FlashiIntClear (uint32_t ui32IntFlags)

void FlashiIntDisable (uint32_t ui32IntFlags)

void FlashintEnable (uint32_t ui32IntFlags)

void FlashiIntRegister (void (xpfnHandler)(void))

uint32_t FlashintStatus (bool bMasked)

void FlashiIntUnregister (void)

int32_t FlashProgram (uint32_t xpui32Data, uint32_t ui32Address, uint32_t ui32Count)
tFlashProtection FlashProtectGet (uint32_t ui32Address)

int32_t FlashProtectSave (void)

int32_t FlashProtectSet (uint32_t ui32Address, tFlashProtection eProtect)
int32_t FlashUserGet (uint32_t «pui32User0, uint32_t xpui32User1)
int32_t FlashUserSave (void)

int32_t FlashUserSet (uint32_t ui32User0, uint32_t ui32User1)

Detailed Description

The flash APl is broken into three groups of functions: those that deal with programming the flash,
those that deal with flash protection, and those that deal with interrupt handling.

Flash programming is managed with FlashErase(), FlashProgram(), FlashUsecGet(), and
FlashUsecSet().

Flash protection is managed with FlashProtectGet(), FlashProtectSet(), and FlashProtectSave().

Interrupt handling is managed with FlashintRegister(), FlashintUnregister(), FlashintEnable(),
FlashIntDisable(), FlashIintGetStatus(), and FlashIntClear().

Function Documentation

FlashAllUserRegisterGet

Gets all the user registers.

Prototype:
int32_t
FlashAllUserRegisterGet (uint32_t xpui32UserO,
uint32_t *pui32Userl,
uint32_t *pui32User2,
uint32_t xpui32User3)

Parameters:
pui32User0 is a pointer to the location to store USER Register 0.

pui32User1 is a pointer to the location to store USER Register 1.
pui32User2 is a pointer to the location to store USER Register 2.
pui32User3 is a pointer to the location to store USER Register 3.

238

February 22, 2017

Flash

Description:
This function reads the contents of user registers 0, 1, 2 and 3, and stores them in the specified
locations.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

12.2.2.2 FlashAllUserRegisterSave

Saves the user registers.

Prototype:
int32_t
FlashAllUserRegisterSave (void)

Description:
This function makes the currently programmed user register 0, 1, 2 and 3 settings perma-
nent. This operation is non-reversible; a chip reset or power cycle does not change the flash
protection.

This function does not return until the protection has been saved.

Note:
To ensure data integrity of the user registers, the commits should not be interrupted with a
power loss.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

12.2.2.3 FlashAllUserRegisterSet

Sets the user registers 0 to 3

Prototype:
int32_t
FlashAllUserRegisterSet (uint32_t ui32UserO,
uint32_t ui32Userl,
uint32_t ui32User2,
uint32_t ui32User3)

Parameters:
ui32User0 is the value to store in USER Register 0.

ui32User1 is the value to store in USER Register 1.
ui32User2 is the value to store in USER Register 2.
ui32User3 is the value to store in USER Register 3.

Description:
This function sets the contents of the user registers 0, 1, 2 and 3 to the specified values.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

February 22, 2017 239

Flash

12.2.2.4

12.2.2.5

FlashErase

Erases a block of flash.

Prototype:
int32_t
FlashErase (uint32_t ui32Address)

Parameters:
ui32Address is the start address of the flash block to be erased.

Description:
This function erases a block of the on-chip flash. After erasing, the block is filled with OxFF
bytes. Read-only and execute-only blocks cannot be erased.

The flash block size is device-class dependent. All TM4C123x devices use 1-KB blocks but
TM4C129x devices use 16-KB blocks. Please consult the device datasheet to determine the
block size in use.

This function does not return until the block has been erased.

Returns:
Returns 0 on success, or -1 if an invalid block address was specified or the block is write-
protected.

FlashIntClear

Clears flash controller interrupt sources.

Prototype:
void
FlashIntClear (uint32_t ui32IntFlags)

Parameters:
ui32IntFlags is the bit mask of the interrupt sources to be cleared.

Description:
The specified flash controller interrupt sources are cleared, so that they no longer assert. The
ui32IntFlags parameter can be the logical OR of any of the following values:

m FLASH_INT_ACCESS occurs when a program or erase action was attempted on a block
of flash that is marked as read-only or execute-only.
m FLASH_INT_PROGRAM occurs when a programming or erase cycle completes.

m FLASH_INT_EEPROM occurs when an EEPROM interrupt occurs. The source of the
EEPROM interrupt can be determined by reading the EEDONE register.

m FLASH_INT_VOLTAGE_ERR occurs when the voltage was out of spec during the flash
operation and the operation was terminated.

m FLASH_INT_DATA_ERR occurs when an operation attempts to program a bit that con-
tainsaOtoal.

m FLASH_INT_ERASE_ERR occurs when an erase operation fails.
m FLASH_INT_PROGRAM_ERR occurs when a program operation fails.

This function must be called in the interrupt handler to keep the interrupt from being triggered
again immediately upon exit.

240

February 22, 2017

Flash

12.2.2.6

12.2.2.7

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

FlashIntDisable

Disables individual flash controller interrupt sources.

Prototype:
void
FlashIntDisable (uint32_t ui32IntFlags)

Parameters:
ui32IntFlags is a bit mask of the interrupt sources to be disabled. The ui32IntFlags parameter
can be the logical OR of any of the following values:

m FLASH_INT_ACCESS occurs when a program or erase action was attempted on a block of
flash that is marked as read-only or execute-only.

FLASH_INT_PROGRAM occurs when a programming or erase cycle completes.

FLASH_INT_EEPROM occurs when an EEPROM interrupt occurs. The source of the EEP-
ROM interrupt can be determined by reading the EEDONE register.

FLASH_INT_VOLTAGE_ERR occurs when the voltage was out of spec during the flash oper-
ation and the operation was terminated.

FLASH_INT_DATA_ERR occurs when an operation attempts to program a bit that contains a
Otoal.

m FLASH_INT_ERASE_ERR occurs when an erase operation fails.
m FLASH_INT_PROGRAM_ERR occurs when a program operation fails.

This function disables the indicated flash controller interrupt sources. Only the sources that are en-
abled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:
None.

void FlashintEnable (uint32_t ui32IntFlags)

Enables individual flash controller interrupt sources.

Parameters:
ui32intFlags is a bit mask of the interrupt sources to be enabled. The ui32IntFlags parameter
can be the logical OR of any of the following values:

February 22, 2017 241

Flash

FLASH_INT_ACCESS occurs when a program or erase action was attempted on a block of
flash that is marked as read-only or execute-only.

FLASH_INT_PROGRAM occurs when a programming or erase cycle completes.

FLASH_INT_EEPROM occurs when an EEPROM interrupt occurs. The source of the EEP-
ROM interrupt can be determined by reading the EEDONE register.

FLASH_INT_VOLTAGE_ERR occurs when the voltage was out of spec during the flash oper-
ation and the operation was terminated.

FLASH_INT_DATA_ERR occurs when an operation attempts to program a bit that contains a
Otoai.

FLASH_INT_ERASE_ERR occurs when an erase operation fails.
FLASH_INT_PROGRAM_ERR occurs when a program operation fails.

This function enables the indicated flash controller interrupt sources. Only the sources that are en-
abled can be reflected to the processor interrupt; disabled sources have no effect on the processor.

Returns:

None.

12.2.2.8 void FlashIntRegister (void(x)(void) pfnHandler)
Registers an interrupt handler for the flash interrupt.
Parameters:
pfnHandler is a pointer to the function to be called when the flash interrupt occurs.
Description:
This function sets the handler to be called when the flash interrupt occurs. The flash controller
can generate an interrupt when an invalid flash access occurs, such as trying to program or
erase a read-only block, or trying to read from an execute-only block. It can also generate
an interrupt when a program or erase operation has completed. The interrupt is automatically
enabled when the handler is registered.
See also:
IntRegister() for important information about registering interrupt handlers.
Returns:
None.
12.2.2.9 FlashIntStatus
Gets the current interrupt status.
Prototype:
uint32_t
FlashIntStatus (bool bMasked)
Parameters:
bMasked is false if the raw interrupt status is required and true if the masked interrupt status
is required.
242 February 22, 2017

Flash

Description:
This function returns the interrupt status for the flash controller. Either the raw interrupt status
or the status of interrupts that are allowed to reflect to the processor can be returned.

Returns:
The current interrupt status, enumerated as a bit field of FLASH_INT_ACCESS,
FLASH_INT_PROGRAM, FLASH_INT_EEPROM, FLASH_INT_VOLTAGE_ERR,

FLASH_INT_DATA_ERR, FLASH_INT_ERASE_ERR, and FLASH_INT_PROGRAM_ERR.

12.2.2.10 FlashIntUnregister

Unregisters the interrupt handler for the flash interrupt.

Prototype:
void
FlashIntUnregister (void)

Description:
This function clears the handler to be called when the flash interrupt occurs. This function also
masks off the interrupt in the interrupt controller so that the interrupt handler is no longer called.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

12.2.2.11 FlashProgram

Programs flash.

Prototype:
int32_t
FlashProgram(uint32_t xpui32Data,
uint32_t ui32Address,
uint32_t ui32Count)

Parameters:
pui32Data is a pointer to the data to be programmed.

ui32Address is the starting address in flash to be programmed. Must be a multiple of four.
ui32Count is the number of bytes to be programmed. Must be a multiple of four.

Description:
This function programs a sequence of words into the on-chip flash. Because the flash is pro-
grammed one word at a time, the starting address and byte count must both be multiples of
four. It is up to the caller to verify the programmed contents, if such verification is required.

This function does not return until the data has been programmed.

Returns:
Returns 0 on success, or -1 if a programming error is encountered.

February 22, 2017 243

Flash

12.2.2.12 FlashProtectGet

Gets the protection setting for a block of flash.

Prototype:
tFlashProtection
FlashProtectGet (uint32_t ui32Address)

Parameters:
ui32Address is the start address of the flash block to be queried.

Description:
This function gets the current protection for the specified block of flash. Refer to the device
data sheet to determine the granularity for each protection option. A block can be read/write,
read-only, or execute-only. Read/write blocks can be read, executed, erased, and programmed.
Read-only blocks can be read and executed. Execute-only blocks can only be executed; pro-
cessor and debugger data reads are not allowed.

Returns:
Returns the protection setting for this block. See FlashProtectSet() for possible values.

12.2.2.13 FlashProtectSave

Saves the flash protection settings.

Prototype:
int32_t
FlashProtectSave (void)

Description:
This function makes the currently programmed flash protection settings permanent. This oper-
ation is non-reversible; a chip reset or power cycle does not change the flash protection.

This function does not return until the protection has been saved.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

12.2.2.14 FlashProtectSet

Sets the protection setting for a block of flash.

Prototype:
int32_t
FlashProtectSet (uint32_t ui32Address,
tFlashProtection eProtect)

Parameters:
ui32Address is the start address of the flash block to be protected.

eProtect is the protection to be applied to the block. Can be one of FlashReadWrite,
FlashReadOnly, or FlashExecuteOnly.

244 February 22, 2017

Flash

Description:
This function sets the protection for the specified block of flash. Refer to the device data sheet
to determine the granularity for each protection option. Blocks that are read/write can be made
read-only or execute-only. Blocks that are read-only can be made execute-only. Blocks that
are execute-only cannot have their protection modified. Attempts to make the block protection
less stringent (that is, read-only to read/write) result in a failure (and are prevented by the
hardware).

Changes to the flash protection are maintained only until the next reset. This protocol allows
the application to be executed in the desired flash protection environment to check for inappro-
priate flash access (via the flash interrupt). To make the flash protection permanent, use the
FlashProtectSave() function.

Returns:
Returns 0 on success, or -1 if an invalid address or an invalid protection was specified.

12.2.2.15 FlashUserGet

Gets the user registers.

Prototype:
int32_t
FlashUserGet (uint32_t *pui32UserO,
uint32_t xpui32Userl)

Parameters:
pui32User0 is a pointer to the location to store USER Register 0.

pui32User1 is a pointer to the location to store USER Register 1.

Description:
This function reads the contents of user registers 0 and 1, and stores them in the specified
locations.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

12.2.2.16 FlashUserSave

Saves the user registers 0 and 1.

Prototype:
int32_t
FlashUserSave (void)

Description:
This function makes the currently programmed user register 0 and 1 settings permanent. This
operation is non-reversible; a chip reset or power cycle does not change the flash protection.

This function does not return until the protection has been saved.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

February 22, 2017 245

Flash

12.2.2.17 FlashUserSet

Sets the user registers.

Prototype:
int32_t
FlashUserSet (uint32_t ui32UserO,
uint32_t ui32Userl)

Parameters:
ui32User0 is the value to store in USER Register 0.

ui32User1 is the value to store in USER Register 1.

Description:
This function sets the contents of the user registers 0 and 1 to the specified values.

Returns:
Returns 0 on success, or -1 if a hardware error is encountered.

12.3 Programming Example

The following example shows how to use the flash API to erase a block of the flash and program a
few words on a TM4C123x device.

uint32_t pui32Datal2];

//

// Erase a block of the flash.
//

FlashErase (0x800) ;

//

// Program some data into the newly erased block of the flash.
//

pui32Data[0] = 0x12345678;

pui32Data[l] = 0x56789%abc;

FlashProgram(pui32Data, 0x800, sizeof (pui32Data));

246 February 22, 2017

Floating-Point Unit (FPU)

13

13.1

Floating-Point Unit (FPU)

I OAUCH ON e 247
AP FUNCHONS ..o e et e e e e 248
Programming EXamIPIe e 252
Introduction

The floating-point unit (FPU) driver provides methods for manipulating the behavior of the floating-
point unit in the Cortex-M processor. By default, the floating-point is disabled and must be enabled
prior to the execution of any floating-point instructions. If a floating-point instruction is executed
when the floating-point unit is disabled, a NOCP usage fault is generated. This feature can be
used by an RTOS, for example, to keep track of which tasks actually use the floating-point unit, and
therefore only perform floating-point context save/restore on task switches that involve those tasks.

There are three methods of handling the floating-point context when the processor executes an in-
terrupt handler: it can do nothing with the floating-point context, it can always save the floating-point
context, or it can perform a lazy save/restore of the floating-point context. If nothing is done with
the floating-point context, the interrupt stack frame is identical to a Cortex-M processor that does
not have a floating-point unit, containing only the volatile registers of the integer unit. This method
is useful for applications where the floating-point unit is used by the main thread of execution, but
not in any of the interrupt handlers. By not saving the floating-point context, stack usage is reduced
and interrupt latency is kept to a minimum.

Alternatively, the floating-point context can always be saved onto the stack. This method allows
floating-point operations to be performed inside interrupt handlers without any special precautions,
at the expense of increased stack usage (for the floating-point context) and increased interrupt
latency (due to the additional writes to the stack). The advantage to this method is that the stack
frame always contains the floating-point context when inside an interrupt handler.

The default handling of the floating-point context is to perform a lazy save/restore. When an in-
terrupt is taken, space is reserved on the stack for the floating-point context but the context is not
written. This method keeps the interrupt latency to a minimum because only the integer state is
written to the stack. Then, if a floating-point instruction is executed from within the interrupt handler,
the floating-point context is written to the stack prior to the execution of the floating-point instruction.
Finally, upon return from the interrupt, the floating-point context is restored from the stack only if
it was written. Using lazy save/restore provides a blend between fast interrupt response and the
ability to use floating-point instructions in the interrupt handler.

The floating-point unit can generate an interrupt when one of several exceptions occur. The ex-
ceptions are underflow, overflow, divide by zero, invalid operation, input denormal, and inexact
exception. The application can optionally choose to enable one or more of these interrupts and use
the interrupt handler to decide upon a course of action to be taken in each case.

The behavior of the floating-point unit can also be adjusted, specifying the format of half-precision
floating-point values, the handle of NaN values, the flush-to-zero mode (which sacrifices full IEEE
compliance for execution speed), and the rounding mode for results.

This driver is contained in driverlib/fpu.c, with driverlib/fpu.h containing the API dec-
larations for use by applications.

February 22, 2017 247

Floating-Point Unit (FPU)

13.2

13.2.1

13.2.2

13.2.2.1

13.2.2.2

API Functions

Functions

void FPUDisable (void)

void FPUEnable (void)

void FPUFlushToZeroModeSet (uint32_t ui32Mode)
void FPUHalfPrecisionModeSet (uint32_t ui32Mode)
void FPULazyStackingEnable (void)

void FPUNaNModeSet (uint32_t ui32Mode)

void FPURoundingModeSet (uint32_t ui32Mode)
void FPUStackingDisable (void)

void FPUStackingEnable (void)

Detailed Description

The FPU API provides functions for enabling and disabling the floating-point unit (FPUEnable() and
FPUDisable()), for controlling how the floating-point state is stored on the stack when interrupts
occur (FPUStackingEnable(), FPULazyStackingEnable(), and FPUStackingDisable()), for han-
dling the floating-point interrupt (FPUIntRegister(), FPUIntUnregister(), FPUIntEnable(), FPUIntDis-
able(), FPUIntStatus(), and FPUIntClear()), and for adjusting the operation of the floating-point unit
(FPUHalfPrecisionModeSet(), FPUNaNModeSet(), FPUFlushToZeroModeSet(), and FPURound-
ingModeSet()).

Function Documentation

FPUDisable

Disables the floating-point unit.
Prototype:
void

FPUDisable (void)

Description:
This function disables the floating-point unit, preventing floating-point instructions from execut-
ing (generating a NOCP usage fault instead).

Returns:
None.

FPUEnable

Enables the floating-point unit.

248

February 22, 2017

Floating-Point Unit (FPU)

13.2.2.3

13.2.2.4

Prototype:
void
FPUEnable (void)

Description:
This function enables the floating-point unit, allowing the floating-point instructions to be exe-
cuted. This function must be called prior to performing any hardware floating-point operations;
failure to do so results in a NOCP usage fault.

Returns:
None.

FPUFlushToZeroModeSet

Selects the flush-to-zero mode.

Prototype:
void
FPUFlushToZeroModeSet (uint32_t ui32Mode)

Parameters:
ui32Mode is the flush-to-zero mode; which is either FPU_FLUSH_TO ZERO DIS or
FPU_FLUSH_TO_ZERO_EN.

Description:
This function enables or disables the flush-to-zero mode of the floating-point unit. When dis-
abled (the default), the floating-point unit is fully IEEE compliant. When enabled, values close
to zero are treated as zero, greatly improving the execution speed at the expense of some
accuracy (as well as IEEE compliance).

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

FPUHalfPrecisionModeSet

Selects the format of half-precision floating-point values.

Prototype:
void
FPUHalfPrecisionModeSet (uint32_t ui32Mode)

Parameters:
ui32Mode is the format for half-precision floating-point value, which is either
FPU_HALF_IEEE or FPU_HALF_ALTERNATE.

Description:
This function selects between the IEEE half-precision floating-point representation and the
Cortex-M processor alternative representation. The alternative representation has a larger

February 22, 2017 249

Floating-Point Unit (FPU)

range but does not have a way to encode infinity (positive or negative) or NaN (quiet or signal-
ing). The default setting is the IEEE format.

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

Returns:
None.

13.2.2.5 FPULazyStackingEnable

Enables the lazy stacking of floating-point registers.

Prototype:
void
FPULazyStackingEnable (void)

Description:
This function enables the lazy stacking of floating-point registers s0-s15 when an interrupt is
handled. When lazy stacking is enabled, space is reserved on the stack for the floating-point
context, but the floating-point state is not saved. If a floating-point instruction is executed from
within the interrupt context, the floating-point context is first saved into the space reserved on
the stack. On completion of the interrupt handler, the floating-point context is only restored if it
was saved (as the result of executing a floating-point instruction).

This method provides a compromise between fast interrupt response (because the floating-
point state is not saved on interrupt entry) and the ability to use floating-point in interrupt han-
dlers (because the floating-point state is saved if floating-point instructions are used).

Returns:
None.

13.2.2.6 FPUNaNModeSet

Selects the NaN mode.

Prototype:
void
FPUNaNModeSet (uint32_t ui32Mode)

Parameters:
ui32Mode is the mode for NaN results; which is either FPU_NAN_PROPAGATE or
FPU_NAN_DEFAULT.

Description:
This function selects the handling of NaN results during floating-point computations. NaNs can
either propagate (the default), or they can return the default NaN.

Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.

250 February 22, 2017

Floating-Point Unit (FPU)

Returns:
None.

13.2.2.7 FPURoundingModeSet

Selects the rounding mode for floating-point results.

Prototype:
void
FPURoundingModeSet (uint32_t ui32Mode)

Parameters:
ui32Mode is the rounding mode.

Description:
This function selects the rounding mode for floating-point results. After a floating-
point operation, the result is rounded toward the specified value. The default mode is
FPU_ROUND_NEAREST.

The following rounding modes are available (as specified by ui32Mode):

= FPU_ROUND_NEAREST - round toward the nearest value
= FPU_ROUND_POS_INF - round toward positive infinity
= FPU_ROUND_NEG_INF - round toward negative infinity
m FPU_ROUND_ZERO - round toward zero
Note:
Unless this function is called prior to executing any floating-point instructions, the default mode
is used.
Returns:
None.

13.2.2.8 FPUStackingDisable

Disables the stacking of floating-point registers.

Prototype:
void
FPUStackingDisable (void)

Description:
This function disables the stacking of floating-point registers s0-s15 when an interrupt is han-
dled. When floating-point context stacking is disabled, floating-point operations performed in
an interrupt handler destroy the floating-point context of the main thread of execution.

Returns:
None.

February 22, 2017 251

Floating-Point Unit (FPU)

13.2.2.9 FPUStackingEnable

Enables the stacking of floating-point registers.

Prototype:
void
FPUStackingEnable (void)

Description:
This function enables the stacking of floating-point registers s0-s15 when an interrupt is han-
dled. When enabled, space is reserved on the stack for the floating-point context and the
floating-point state is saved into this stack space. Upon return from the interrupt, the floating-
point context is restored.

If the floating-point registers are not stacked, floating-point instructions cannot be safely exe-
cuted in an interrupt handler because the values of s0-s15 are not likely to be preserved for
the interrupted code. On the other hand, stacking the floating-point registers increases the
stacking operation from 8 words to 26 words, also increasing the interrupt response latency.

Returns:
None.

13.3 Programming Example

The following example shows how to use the FPU API to enable the floating-point unit and configure
the stacking of floating-point context.

//

// Enable the floating-point unit.
//

FPUEnable () ;

//

// Configure the floating-point unit to perform lazy stacking of the
// floating-point state.

//

FPULazyStackingEnable () ;

252 February 22, 2017

GPIO

14

14.1

GPIO

I OAUCH ON e 253
AP FUNCHONS ..o e et e e e e 254
Programming EXamIPIe e 285
Introduction

The GPIO module provides control for up to eight independent GPIO pins (the actual number
present depend upon the GPIO port and part number). Each pin has the following capabilities:

m Can be configured as an input or an output. On reset, GPIOs default to being inputs.

m In input mode, can generate interrupts on high level, low level, rising edge, falling edge, or
both edges.

m In output mode, can be configured for 2-mA, 4-mA, or 8-mA drive strength. The 8-mA drive
strength configuration has optional slew rate control to limit the rise and fall times of the signal.
On reset, GPIOs default to 2-mA drive strength.

m Optional weak pull-up or pull-down resistors. On reset, GPIOs default to no pull-up or pull-
down resistors.

m Optional open-drain operation. On reset, GPIOs default to standard push/pull operation.

m Can be configured to be a GPIO or a peripheral pin. On reset, the default is GPIO. Note that
not all pins on all parts have peripheral functions, in which case the pin is only useful as a
GPIO.

Most of the GPIO functions can operate on more than one GPIO pin (within a single module) at a
time. The ucPins parameter to these functions is used to specify the pins that are affected; only the
GPIO pins corresponding to the bits in this parameter that are set are affected (where pin 0 is bit
0, pin 1 in bit 1, and so on). For example, if ucPins is 0x09, then pins 0 and 3 are affected by the
function.

This protocol is most useful for the GPIOPinRead() and GPIOPinWrite() functions; a read returns
only the values of the requested pins (with the other pin values masked out) and a write only affects
the requested pins simultaneously (that is, the state of multiple GPIO pins can be changed at the
same time). This data masking for the GPIO pin state occurs in the hardware; a single read or write
is issued to the hardware, which interprets some of the address bits as an indication of the GPIO
pins to operate on (and therefore the ones to not affect). See the part data sheet for details of the
GPIO data register address-based bit masking.

For functions that have a ucPin (singular) parameter, only a single pin is affected by the function. In
this case, the value specifies the pin number (that is, 0 through 7).

NOTE: A subset of GPIO pins on many Tiva devices are protected by a locking mechanism to
prevent inadvertent reconfiguration. The actual pins vary by device but typically include any pin that
is part of the JTAG or SWD interface, and any pin which may be configured as an NMI input. On
a TM4C129XNCZAD part, for example, this affects pins PC[3:0], PD7 and PE7. Locked pins may
not be reconfigured without first unlocking them using the mechanism described under “Commit
Control” in the GPIO chapter of your device’s datasheet. This mechanism is also illustrated in the
TivaWare “gpio_jtag” example application included for all target evaluation and development kits.

This driver is contained in driverlib/gpio.c, with driverlib/gpio.h containing the API
declarations for use by applications.

February 22, 2017 253

GPIO

14.2 API Functions

Functions

void GPIOADCTriggerDisable (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOADCTriggerEnable (uint32_t ui32Port, uint8_t ui8Pins)

uint32_t GPIODirModeGet (uint32_t ui32Port, uint8_t ui8Pin)

void GPIODirModeSet (uint32_t ui32Port, uint8_t ui8Pins, uint32_t ui32PinlO)
void GPIODMATriggerDisable (uint32_t ui32Port, uint8_t ui8Pins)

void GPIODMATriggerEnable (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOIntClear (uint32_t ui32Port, uint32_t ui32IntFlags)

void GPIOIntDisable (uint32_t ui32Port, uint32_t ui32IntFlags)

void GPIOIntEnable (uint32_t ui32Port, uint32_t ui32IntFlags)

void GPIOIntRegister (uint32_t ui82Port, void («xpfnintHandler)(void))

void GPIOIntRegisterPin (uint32_t uid2Port, uint32_t ui32Pin, void (xpfnintHandler)(void))
uint32_t GPIOIntStatus (uint32_t ui32Port, bool bMasked)

uint32_t GPIOIntTypeGet (uint32_t ui32Port, uint8_t ui8Pin)

void GPIOIntTypeSet (uint32_t ui32Port, uint8_t ui8Pins, uint32_t ui32IntType)
void GPIOIntUnregister (uint32_t ui32Port)

void GPIOIntUnregisterPin (uint32_t ui32Port, uint32_t ui32Pin)

void GPIOPadConfigGet (uint32_t ui32Port, uint8_t ui8Pin, uint32_t xpui32Strength, uint32_t
xpui32PinType)

void GPIOPadConfigSet (uint32_t ui32Port, uint8_t ui8Pins, uint32_t ui32Strength, uint32_t
ui32PinType)

void GPIOPinConfigure (uint32_t ui32PinConfig)

int32_t GPIOPinRead (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeADC (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeCAN (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeComparator (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeComparatorOutput (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeDIVSCLK (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeEPI (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeEthernetLED (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeEthernetMIl (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeGPIOInput (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeGPIOOQutput (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeGPIOOutputOD (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeHibernateRTCCLK (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypel2C (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypel2CSCL (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeLCD (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeOneWire (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypePWM (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeQEI (uint32_t ui32Port, uint8 _t ui8Pins)

void GPIOPinTypeSSI (uint32_t ui32Port, uint8_t ui8Pins)

254 February 22, 2017

GPIO

void GPIOPinTypeTimer (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeTrace (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeUART (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeUSBAnalog (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeUSBDigital (uint32_t ui32Port, uint8_t ui8Pins)
void GPIOPinTypeWakeHigh (uint32_t ui32Port, uint8_t ui8Pins)

void GPIOPinTypeWakeLow (uint32_t ui32Port, uint8_t ui8Pins)
uint32_t GPIOPinWakeStatus (uint32_t ui32Port)

void GPIOPinWrite (uint32_t ui32Port, uint8_t ui8Pins, uint8_t ui8Val)

14.2.1 Detailed Description

The GPIO API is broken into three groups of functions: those that deal with configuring the GPIO
pins, those that deal with interrupts, and those that access the pin value.

The GPIO pins are configured with GPIODirModeSet(), GPIOPadConfigSet(), and GPIOPinConfig-
ure(). The configuration can be read back with GPIODirModeGet() and GPIOPadConfigGety().

The GPIO pin state is accessed with GPIOPinRead() and GPIOPinWrite().

The GPIO interrupts are handled with GPIOIntTypeSet(), GPIOIntTypeGet(), GPIOIntEnable(), GPI-
OlntDisable(), GPIOIntStatus(), GPIOIntClear(), GPIOIntRegister(), and GPIOIntUnregister().

14.2.2 GPIO Pin Configuration

Many of the GPIO pins on the TM4C123 and TM4C129 devices have other peripheral functions
that can also use the GPIO pins for peripheral pins. The Peripheral Driver Library provides a
set of convenience functions to configure the pins in the required or recommended input/output
configuration for a particular peripheral; these are GPIOPinTypeADC(), GPIOPinTypeCAN(),
GPIOPinTypeComparator(), GPIOPinTypeEPI(), GPIOPinTypeEthernetLED(), GPIOPinTypeEther-
netMIl(), GPIOPinTypeGPIOInput(), GPIOPinTypeGPIOOutput(), GPIOPinTypeGPIOOutputOD(),
GPIOPinTypel2C(), GPIOPinTypel2CSCL(), GPIOPinTypeLCD() GPIOPinTypePWM(), GPIOPIn-
TypeQEIl(), GPIOPinTypeSSI(), GPIOPinTypeTimer(), GPIOPinTypeUART(), GPIOPinTypeUS-
BAnalog(), GPIOPinTypeUSBDigital(), GPIOPinTypeWakeHigh(), GPIOPinTypeWakeLow(), GPI-
OPinWakeStatus(), GPIODMATriggerEnable(), GPIODMATriggerDisable(), GPIOADCTriggerEn-
able(), and GPIOADCTriggerDisable(). In order to complete the pin configuration, the GPIOPinCon-
figure() function must also be called to enable the desired peripheral function on the given GPIO pin.
The GPIOPinConfigure() function uses the pin definitions located in the driverlib/pin_map.h
file. These definitions follow the GPIO_P<port><pin>_<peripheral_function> naming scheme.
The available pin mappings are supplied on a per-device basis and are selected using the
PART_<partno> defines to enable only the pin definitions that are valid for the given device. For
example, on the TM4C129XNCZAD device the UART1 RX function can be enabled on one of two
pins. The UART1 RX is found on GPIO port B pin 0(GPIO_PB0_U1RX) or it can also be found on
GPIO port Q pin 4(GPIO_PQ4_U1RX). The application must define the PART_TM4C129XNCZAD
in order to get the correct pin mappings for the TM4C129XNCZAD device.

Note:
The PART_<partno> macros also control the mapping of interrupt names to interrupt num-
bers. See the Interrupt Mapping section of this document for more details on how these defines
are used to determine interrupt mapping.

February 22, 2017 255

GPIO

14.2.3

14.2.3.1

14.2.3.2

A locked GPIO pin must be unlocked prior to making calls to GPIODirModeSet(), GPIOPadCon-
figSet() or any of the GPIOPinType functions.

Function Documentation

GPIOADCTriggerDisable

Disable a GPIO pin as a trigger to start an ADC capture.

Prototype:
void
GPIOADCTriggerDisable (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
This function disables a GPIO pin to be used as a trigger to start an ADC sequence. This func-
tion can be used to disable this feature if it was enabled via a call to GPIOADCTriggerEnable().

Returns:
None.

GPIOADCTriggerEnable

Enables a GPIO pin as a trigger to start an ADC capture.

Prototype:
void
GPIOADCTriggerEnable (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
This function enables a GPIO pin to be used as a trigger to start an ADC sequence. Any
GPIO pin can be configured to be an external trigger for an ADC sequence. The GPIO pin still
generates interrupts if the interrupt is enabled for the selected pin. To enable the use of a GPIO
pin to trigger the ADC module, the ADCSequenceConfigure() function must be called with the
ADC_TRIGGER_EXTERNAL parameter.

Returns:
None.

256

February 22, 2017

GPIO

14.2.3.3

14.2.3.4

GPIODirModeGet

Gets the direction and mode of a pin.

Prototype:
uint32_t
GPIODirModeGet (uint32_t ui32Port,
uint8_t ui8Pin)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pin is the pin number.

Description:
This function gets the direction and control mode for a specified pin on the selected GPIO port.
The pin can be configured as either an input or output under software control, or it can be under
hardware control. The type of control and direction are returned as an enumerated data type.

Returns:
Returns one of the enumerated data types described for GPIODirModeSet().

GPIODirModeSet

Sets the direction and mode of the specified pin(s).

Prototype:
void
GPIODirModeSet (uint32_t wui32Port,
uint8_t ui8Pins,
uint32_t ui32PinIO)

Parameters:
ui32Port is the base address of the GPIO port

ui8Pins is the bit-packed representation of the pin(s).
ui32PinlO is the pin direction and/or mode.

Description:
This function configures the specified pin(s) on the selected GPIO port as either input or output
under software control, or it configures the pin to be under hardware control.

The parameter ui32PinlO is an enumerated data type that can be one of the following values:

= GPIO_DIR_MODE_IN
= GPIO_DIR_MODE_OUT
= GPIO_DIR_MODE_HW

where GPIO_DIR_MODE_IN specifies that the pin is programmed as a software controlled
input, GPIO_DIR_MODE_OUT specifies that the pin is programmed as a software controlled
output, and GPIO_DIR_MODE_HW specifies that the pin is placed under hardware control.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

February 22, 2017 257

GPIO

Note:
GPIOPadConfigSet() must also be used to configure the corresponding pad(s) in order for them
to propagate the signal to/from the GPIO.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.
14.2.3.5 GPIODMATriggerDisable
Disables a GPIO pin as a trigger to start a DMA transaction.
Prototype:
void
GPIODMATriggerDisable (uint32_t ui32Port,
uint8_t ui8Pins)
Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).
Description:
This function disables a GPIO pin from being used as a trigger to start a uDMA transaction.
This function can be used to disable this feature if it was enabled via a call to GPIODMATrig-
gerEnable().
Returns:
None.
14.2.3.6 GPIODMATriggerEnable
Enables a GPIO pin as a trigger to start a DMA transaction.
Prototype:
void
GPIODMATriggerEnable (uint32_t ui32Port,
uint8_t wui8Pins)
Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).
Description:
This function enables a GPIO pin to be used as a trigger to start a uDMA transaction. Any GPIO
pin can be configured to be an external trigger for the uDMA. The GPIO pin still generates
interrupts if the interrupt is enabled for the selected pin.
258 February 22, 2017

GPIO

14.2.3.7

14.2.3.8

Returns:
None.

GPIOIntClear

Clears the specified interrupt sources.

Prototype:
void
GPIOIntClear (uint32_t ui32Port,
uint32_t ui32IntFlags)

Parameters:
ui32Port is the base address of the GPIO port.

ui32intFlags is the bit mask of the interrupt sources to disable.

Description:
Clears the interrupt for the specified interrupt source(s).

The ui32IntFlags parameter is the logical OR of the GPIO_INT_x values.

Note:
Because there is a write buffer in the Cortex-M processor, it may take several clock cycles
before the interrupt source is actually cleared. Therefore, it is recommended that the interrupt
source be cleared early in the interrupt handler (as opposed to the very last action) to avoid
returning from the interrupt handler before the interrupt source is actually cleared. Failure to
do so may result in the interrupt handler being immediately reentered (because the interrupt
controller still sees the interrupt source asserted).

Returns:
None.

GPIOIntDisable

Disables the specified GPIO interrupts.

Prototype:
void
GPIOIntDisable (uint32_t wui32Port,
uint32_t ui32IntFlags)

Parameters:
ui32Port is the base address of the GPIO port.

ui32IntFlags is the bit mask of the interrupt sources to disable.

Description:
This function disables the indicated GPIO interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:
m GPIO_INT_PIN_O - interrupt due to activity on Pin 0.

February 22, 2017 259

GPIO

m GPIO_INT_PIN_1 - interrupt due to activity on Pin 1.
m GPIO_INT_PIN_2 - interrupt due to activity on Pin 2.
m GPIO_INT_PIN_3 - interrupt due to activity on Pin 3.
m GPIO_INT_PIN_4 - interrupt due to activity on Pin 4.
m GPIO_INT_PIN_5 - interrupt due to activity on Pin 5.
m GPIO_INT_PIN_6 - interrupt due to activity on Pin 6.
m GPIO_INT_PIN_7 - interrupt due to activity on Pin 7.
m GPIO_INT_DMA - interrupt due to DMA activity on this GPIO module.

Returns:
None.

14.2.3.9 GPIOIntEnable

Enables the specified GPIO interrupts.
Prototype:

void
GPIOIntEnable (uint32_t ui32Port,
uint32_t ui32IntFlags)

Parameters:
ui32Port is the base address of the GPIO port.
ui32IntFlags is the bit mask of the interrupt sources to enable.

Description:
This function enables the indicated GPIO interrupt sources. Only the sources that are enabled
can be reflected to the processor interrupt; disabled sources have no effect on the processor.

The ui32IntFlags parameter is the logical OR of any of the following:

m GPIO_INT_PIN_O - interrupt due to activity on Pin 0.
m GPIO_INT_PIN_1 - interrupt due to activity on Pin 1.
m GPIO_INT_PIN_2 - interrupt due to activity on Pin 2.
m GPIO_INT_PIN_3 - interrupt due to activity on Pin 3.
m GPIO_INT_PIN_4 - interrupt due to activity on Pin 4.
m GPIO_INT_PIN_5 - interrupt due to activity on Pin 5.
m GPIO_INT_PIN_6 - interrupt due to activity on Pin 6.
m GPIO_INT_PIN_7 - interrupt due to activity on Pin 7.
m GPIO_INT_DMA - interrupt due to DMA activity on this GPIO module.

Note:

If this call is being used to enable summary interrupts on GPIO port P or Q (GPIOIntTypeSet()
with GPIO_DISCRETE_INT not enabled), then all individual interrupts for these ports must be
enabled in the GPIO module using GPIOIntEnable() and all but the interrupt for pin 0 must be
disabled in the NVIC using the IntDisable() function. The summary interrupts for the ports are
routed to the INT_GPIOPO or INT_GPIOQO which must be enabled to handle the interrupt. If
this is not done then any individual GPIO pin interrupts that are left enabled also trigger the
individual interrupts.

Returns:
None.

260 February 22, 2017

GPIO

14.2.3.10 GPIOIntRegister

14.2.3.11

Registers an interrupt handler for a GPIO port.

Prototype:
void
GPIOIntRegister (uint32_t ui32Port,
void (xpfnIntHandler) (void))

Parameters:
ui32Port is the base address of the GPIO port.

pfnintHandler is a pointer to the GPIO port interrupt handling function.

Description:
This function ensures that the interrupt handler specified by pfnintHandler is called when an
interrupt is detected from the selected GPIO port. This function also enables the corresponding
GPIO interrupt in the interrupt controller; individual pin interrupts and interrupt sources must
be enabled with GPIOIntEnable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

GPI1OIntRegisterPin

Registers an interrupt handler for an individual pin of a GPIO port.

Prototype:
void
GPIOIntRegisterPin (uint32_t ui32Port,
uint32_t ui32Pin,
void (xpfnIntHandler) (void))

Parameters:
ui32Port is the base address of the GPIO port.
ui32Pin is the pin whose interrupt is to be registered.
pfnintHandler is a pointer to the GPIO port interrupt handling function.

Description:
This function ensures that the interrupt handler specified by pfnintHandler is called when an
interrupt is detected from the selected pin of a GPIO port. This function also enables the
corresponding GPIO pin interrupt in the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

February 22,

2017 261

GPIO

14.2.3.12 GPIOIntStatus

Gets interrupt status for the specified GPIO port.

Prototype:
uint32_t
GPIOIntStatus (uint32_t ui32Port,
bool bMasked)

Parameters:
ui32Port is the base address of the GPIO port.
bMasked specifies whether masked or raw interrupt status is returned.

Description:
If bMasked is set as true, then the masked interrupt status is returned; otherwise, the raw
interrupt status is returned.

Returns:
Returns the current interrupt status for the specified GPIO module. The value returned is the
logical OR of the GPIO_INT_x values that are currently active.

14.2.3.13 GPIOIntTypeGet

Gets the interrupt type for a pin.

Prototype:
uint32_t
GPIOIntTypeGet (uint32_t ui32Port,
uint8_t ui8Pin)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pin is the pin number.

Description:
This function gets the interrupt type for a specified pin on the selected GPIO port. The pin
can be configured as a falling-edge, rising-edge, or both-edges detected interrupt, or it can
be configured as a low-level or high-level detected interrupt. The type of interrupt detection
mechanism is returned and can include the GPIO_DISCRETE_INT flag.

Returns:
Returns one of the flags described for GPIOIntTypeSet().

14.2.3.14 GPIOIntTypeSet

Sets the interrupt type for the specified pin(s).
Prototype:

void

GPIOIntTypeSet (uint32_t ui32Port,
uint8_t ui8Pins,
uint32_t ui32IntType)

262 February 22, 2017

GPIO

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).
ui32IntType specifies the type of interrupt trigger mechanism.

Description:
This function sets up the various interrupt trigger mechanisms for the specified pin(s) on the
selected GPIO port.

One of the following flags can be used to define the ui32IntType parameter:

m GPIO_FALLING_EDGE sets detection to edge and trigger to falling
m GPIO_RISING_EDGE sets detection to edge and trigger to rising

m GPIO_BOTH_EDGES sets detection to both edges

m GPIO_LOW_LEVEL sets detection to low level

m GPIO_HIGH_LEVEL sets detection to high level

In addition to the above flags, the following flag can be OR’d in to the ui32IntType parameter:
m GPIO_DISCRETE_INT sets discrete interrupts for each pin on a GPIO port.

The GPIO_DISCRETE_INT is not available on all devices or all GPIO ports, consult the data
sheet to ensure that the device and the GPIO port supports discrete interrupts.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
In order to avoid any spurious interrupts, the user must ensure that the GPIO inputs remain
stable for the duration of this function.

Returns:
None.

14.2.3.15 GPIOIntUnregister

Removes an interrupt handler for a GPIO port.

Prototype:
void
GPIOIntUnregister (uint32_t ui32Port)

Parameters:
ui32Port is the base address of the GPIO port.

Description:
This function unregisters the interrupt handler for the specified GPIO port. This function also
disables the corresponding GPIO port interrupt in the interrupt controller; individual GPIO in-
terrupts and interrupt sources must be disabled with GPIOIntDisable().

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

February 22, 2017 263

GPIO

14.2.3.16 GPIOIntUnregisterPin

Removes an interrupt handler for an individual pin of a GPIO port.

Prototype:

void
GPIOIntUnregisterPin (uint32_t ui32Port,
uint32_t ui32Pin)

Parameters:
ui32Port is the base address of the GPIO port.

ui32Pin is the pin whose interrupt is to be unregistered.

Description:
This function unregisters the interrupt handler for the specified pin of a GPIO port. This function
also disables the corresponding GPIO pin interrupt in the interrupt controller.

See also:
IntRegister() for important information about registering interrupt handlers.

Returns:
None.

14.2.3.17 GPIOPadConfigGet

Gets the pad configuration for a pin.

Prototype:
void
GPIOPadConfigGet (uint32_t ui32Port,
uint8_t ui8Pin,
uint32_t *pui32Strength,
uint32_t *pui32PinType)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pin is the pin number.
pui32Strength is a pointer to storage for the output drive strength.
pui32PinType is a pointer to storage for the output drive type.

Description:
This function gets the pad configuration for a specified pin on the selected GPIO port. The
values returned in pui32Strength and pui32PinType correspond to the values used in GPI-
OPadConfigSet(). This function also works for pin(s) configured as input pin(s); however, the
only meaningful data returned is whether the pin is terminated with a pull-up or down resistor.

Returns:
None

264 February 22, 2017

GPIO

14.2.3.18 GPIOPadConfigSet

Sets the pad configuration for the specified pin(s).

Prototype:
void
GPIOPadConfigSet (uint32_t ui32Port,
uint8_t ui8Pins,
uint32_t ui32Strength,
uint32_t ui32PinType)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).
ui32Strength specifies the output drive strength.
ui32PinType specifies the pin type.

Description:
This function sets the drive strength and type for the specified pin(s) on the selected GPIO
port. For pin(s) configured as input ports, the pad is configured as requested, but the only real
effect on the input is the configuration of the pull-up or pull-down termination.

The parameter ui32Strength can be one of the following values:

= GPIO_STRENGTH_2MA
= GPIO_STRENGTH_4MA
= GPIO_STRENGTH_SMA
= GPIO_STRENGTH_8MA_SC
= GPIO_STRENGTH_6MA
= GPIO_STRENGTH_10MA
= GPIO_STRENGTH_12MA

where GPIO_STRENGTH_xMA specifies either 2, 4, or 8 mA output drive strength, and
GPIO_OUT_STRENGTH_8MA_SC specifies 8 mA output drive with slew control.

Some Tiva devices also support output drive strengths of 6, 10, and 12 mA.

The parameter ui32PinType can be one of the following values:

= GPIO_PIN_TYPE_STD

= GPIO_PIN_TYPE_STD_WPU

= GPIO_PIN_TYPE_STD_WPD

= GPIO_PIN_TYPE_OD

= GPIO_PIN_TYPE_ANALOG

= GPIO_PIN_TYPE_WAKE_HIGH
= GPIO_PIN_TYPE_WAKE_LOW

where GPIO_PIN_TYPE_STDx specifies a push-pull pin, GPIO_PIN_TYPE_OD= specifies an
open-drain pin, x_WPU specifies a weak pull-up, *_WPD specifies a weak pull-down, and
GPIO_PIN_TYPE_ANALOG specifies an analog input.

The GPIO_PIN_TYPE_WAKE_x settings specify the pin to be used as a hibernation wake
source. The pin sense level can be high or low. These settings are only available on some Tiva
devices.

February 22, 2017 265

GPIO

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.19 GPIOPinConfigure

Configures the alternate function of a GPIO pin.

Prototype:
void
GPIOPinConfigure (uint32_t ui32PinConfig)

Parameters:
ui32PinConfig is the pin configuration value, specified as only one of the GPIO_P??_7?7??
values.

Description:
This function configures the pin mux that selects the peripheral function associated with a
particular GPIO pin. Only one peripheral function at a time can be associated with a GPIO
pin, and each peripheral function should only be associated with a single GPIO pin at a time
(despite the fact that many of them can be associated with more than one GPIO pin). To fully
configure a pin, a GPIOPinType=x() function should also be called.

The available mappings are supplied on a per-device basis in pin_map.h. The
PART_<partno> defines controls which set of defines are included so that they match the
device that is being used. For example, PART_TM4C129XNCZAD must be defined in order to
get the correct pin mappings for the TM4C129XNCZAD device.

Note:
If the same signal is assigned to two different GPIO port pins, the signal is assigned to the port
with the lowest letter and the assignment to the higher letter port is ignored.

Returns:
None.

14.2.3.20 GPIOPinRead

Reads the values present of the specified pin(s).

266 February 22, 2017

GPIO

Prototype:
int32_t
GPIOPinRead (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The values at the specified pin(s) are read, as specified by ui8Pins. Values are returned for
both input and output pin(s), and the value for pin(s) that are not specified by ui8Pins are set
to 0.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
Returns a bit-packed byte providing the state of the specified pin, where bit 0 of the byte
represents GPIO port pin 0, bit 1 represents GPIO port pin 1, and so on. Any bit that is not
specified by ui8Pins is returned as a 0. Bits 31:8 should be ignored.

14.2.3.21 GPIOPinTypeADC

Configures pin(s) for use as analog-to-digital converter inputs.

Prototype:
void
GPIOPinTypeADC (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The analog-to-digital converter input pins must be properly configured for the analog-to-digital
peripheral to function correctly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an ADC input; it only configures an ADC input
pin for proper operation.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

February 22, 2017 267

GPIO

Returns:
None.

14.2.3.22 GPIOPinTypeCAN

Configures pin(s) for use as a CAN device.

Prototype:
void
GPIOPinTypeCAN (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The CAN pins must be properly configured for the CAN peripherals to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a CAN pin; it only configures a CAN pin for
proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the CAN function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.23 GPIOPinTypeComparator

Configures pin(s) for use as an analog comparator input.

Prototype:
void
GPIOPinTypeComparator (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

268

February 22, 2017

GPIO

ui8Pins is the bit-packed representation of the pin(s).

Description:
The analog comparator input pins must be properly configured for the analog comparator to
function correctly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an analog comparator input; it only configures
an analog comparator pin for proper operation. Note that a GPIOPinConfigure() function call is
also required to properly configure a pin for the analog comparator function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.24 GPIOPinTypeComparatorOutput

Configures pin(s) for use as an analog comparator output.

Prototype:
void
GPIOPinTypeComparatorOutput (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The analog comparator output pins must be properly configured for the analog comparator to
function correctly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

14.2.3.25 GPIOPinTypeDIVSCLK

Configures pin(s) for use as an clock to be output from the device.

February 22, 2017 269

GPIO

Prototype:
void
GPIOPinTypeDIVSCLK (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The system control output pin must be properly configured for the DIVSCLK to function cor-
rectly. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

14.2.3.26 GPIOPinTypeEPI

Configures pin(s) for use by the external peripheral interface.

Prototype:
void
GPIOPinTypeEPI (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The external peripheral interface pins must be properly configured for the external peripheral
interface to function correctly. This function provides a typical configuration for those pin(s);
other configurations may work as well depending upon the board setup (for example, using the
on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an external peripheral interface pin; it only
configures an external peripheral interface pin for proper operation. Note that a GPIOPin-
Configure() function call is also required to properly configure a pin for the external peripheral
interface function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example

270

February 22, 2017

GPIO

application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.27 GPIOPinTypeEthernetLED

Configures pin(s) for use by the Ethernet peripheral as LED signals.

Prototype:
void
GPIOPinTypeEthernetLED (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The Ethernet peripheral provides four signals that can be used to drive an LED (for example,
for link status/activity). This function provides a typical configuration for the pins.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into an Ethernet LED pin; it only configures an
Ethernet LED pin for proper operation. Note that a GPIOPinConfigure() function call is also
required to properly configure the pin for the Ethernet LED function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.28 GPIOPinTypeEthernetMlI

Configures pin(s) for use by the Ethernet peripheral as Mll signals.

Prototype:
void
GPIOPinTypeEthernetMII (uint32_t ui32Port,
uint8_t ui8Pins)

February 22, 2017 271

GPIO

Parameters:

ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:

The Ethernet peripheral on some parts provides a set of Ml signals that are used to connect
to an external PHY. This function provides a typical configuration for the pins.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:

This function cannot be used to turn any pin into an Ethernet MII pin; it only configures an
Ethernet MII pin for proper operation. Note that a GPIOPinConfigure() function call is also
required to properly configure the pin for the Ethernet MII function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:

None.

14.2.3.29 GPIOPinTypeGPIOInput

Configures pin(s) for use as GPIO inputs.

Prototype:

void
GPIOPinTypeGPIOInput (uint32_t ui32Port,
uint8_t wui8Pins)

Parameters:

ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:

The GPIO pins must be properly configured in order to function correctly as GPIO inputs. This
function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example

272

February 22, 2017

GPIO

application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.30 GPIOPinTypeGPIOOutput

Configures pin(s) for use as GPIO outputs.

Prototype:
void
GPIOPinTypeGPIOOutput (uint32_t ui32Port,
uint8_t wui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO outputs.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.31 GPIOPinTypeGPIOOutputOD

Configures pin(s) for use as GPIO open drain outputs.

Prototype:
void
GPIOPinTypeGPIOOutputOD (uint32_t ui32Port,
uint8_t wui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

February 22, 2017 273

GPIO

Description:
The GPIO pins must be properly configured in order to function correctly as GPIO outputs.
This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.32 GPIOPinTypeHibernateRTCCLK

Configures pin(s) for use as an Hibernate RTC Clock.

Prototype:
void
GPIOPinTypeHibernateRTCCLK (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The hibernate output pin must be properly configured for the RTCCLK to function correctly.
This function provides the proper configuration for the RTC Clock to be output from the device.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Returns:
None.

14.2.3.33 GPIOPinTypel2C

Configures pin for use as SDA by the 12C peripheral.

Prototype:
void
GPIOPinTypelI2C (uint32_t ui32Port,
uint8_t ui8Pins)

274

February 22, 2017

GPIO

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin.

Description:
The 12C pins must be properly configured for the 12C peripheral to function correctly. This
function provides the proper configuration for the SDA pin.

The pin is specified using a bit-packed byte, where each bit that is set identifies the pin to be
accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port
pin 1, and so on.

Note:
This function cannot be used to turn any pin into an 12C SDA pin; it only configures an 12C
SDA pin for proper operation. Note that a GPIOPinConfigure() function call is also required to
properly configure a pin for the 12C SDA function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.34 GPIOPinTypel2CSCL

Configures pin for use as SCL by the 12C peripheral.
Prototype:

void
GPIOPinTypeI2CSCL (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin.

Description:
The 12C pins must be properly configured for the 12C peripheral to function correctly. This
function provides the proper configuration for the SCL pin.

The pin is specified using a bit-packed byte, where each bit that is set identifies the pin to be
accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO port
pin 1, and so on.

Note:
This function cannot be used to turn any pin into an 12C SCL pin; it only configures an 12C
SCL pin for proper operation. Note that a GPIOPinConfigure() function call is also required to
properly configure a pin for the 12C SCL function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.

February 22, 2017 275

GPIO

These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:

None.

14.2.3.35 GPIOPinTypeLCD

Configures pin(s) for use by the LCD Controller.
Prototype:

void
GPIOPinTypelCD (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:

ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:

The LCD controller pins must be properly configured for the LCD controller to function correctly.
This function provides a typical configuration for those pin(s); other configurations may work as
well depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:

This function cannot be used to turn any pin into an LCD pin; it only configures an LCD pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the LCD controller function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:

None.

14.2.3.36 GPIOPinTypeOneWire

Configures pin(s) for use by the 1-Wire module.

Prototype:

void
GPIOPinTypeOneWire (uint32_t ui32Port,
uint8_t ui8Pins)

276

February 22, 2017

GPIO

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The 1-Wire pin must be properly configured for the 1-Wire peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a 1-Wire pin; it only configures a 1-Wire pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the 1-Wire function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.37 GPIOPinTypePWM

Configures pin(s) for use by the PWM peripheral.

Prototype:
void
GPIOPinTypePWM (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The PWM pins must be properly configured for the PWM peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a PWM pin; it only configures a PWM pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the PWM function.

February 22, 2017 277

GPIO

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.38 GPIOPinTypeQE|

Configures pin(s) for use by the QEI peripheral.

Prototype:
void
GPIOPinTypeQEI (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The QEI pins must be properly configured for the QEI peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, not using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a QEI pin; it only configures a QEI pin for
proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the QEI function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.39 GPIOPinTypeSSI

Configures pin(s) for use by the SSI peripheral.

278

February 22, 2017

GPIO

Prototype:
void
GPIOPinTypeSSI (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The SSI pins must be properly configured for the SSI peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a SSI pin; it only configures a SSI pin for
proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the SSI function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.40 GPIOPinTypeTimer

Configures pin(s) for use by the Timer peripheral.

Prototype:
void
GPIOPinTypeTimer (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The CCP pins must be properly configured for the timer peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

February 22, 2017 279

GPIO

Note:

This function cannot be used to turn any pin into a timer pin; it only configures a timer pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the CCP function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:

None.

14.2.3.41 GPIOPinTypeTrace

Configures pin(s) for use by the Trace peripheral.

Prototype:

void
GPIOPinTypeTrace (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:

ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:

The Trace pins must be properly configured for the Trace peripheral to function correctly. This
function provides a typical configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:

This function cannot be used to turn any pin into a trace pin; it only configures a trace pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the Trace function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:

None.

280

February 22, 2017

GPIO

14.2.3.42 GPIOPinTypeUART

Configures pin(s) for use by the UART peripheral.

Prot

otype:

void

GPIOPinTypeUART (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:

ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:

The UART pins must be properly configured for the UART peripheral to function correctly. This
function provides a typical configuration for those pin(s); other configurations may work as well
depending upon the board setup (for example, using the on-chip pull-ups).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:

This function cannot be used to turn any pin into a UART pin; it only configures a UART pin
for proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the UART function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:

None.

14.2.3.43 GPIOPinTypeUSBAnalog

Configures pin(s) for use by the USB peripheral.

Prototype:

void
GPIOPinTypeUSBAnalog (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:

ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:

USB analog pins must be properly configured for the USB peripheral to function correctly. This
function provides the proper configuration for any USB analog pin(s).

February 22, 2017

281

GPIO

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a USB pin; it only configures a USB pin for
proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the USB function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.44 GPIOPinTypeUSBDigital

Configures pin(s) for use by the USB peripheral.
Prototype:

void
GPIOPinTypeUSBDigital (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.
ui8Pins is the bit-packed representation of the pin(s).

Description:
USB digital pins must be properly configured for the USB peripheral to function correctly. This
function provides a typical configuration for the digital USB pin(s); other configurations may
work as well depending upon the board setup (for example, using the on-chip pull-ups).

This function should only be used with EPEN and PFAULT pins as all other USB pins are
analog in nature or are not used in devices without OTG functionality.

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
This function cannot be used to turn any pin into a USB pin; it only configures a USB pin for
proper operation. Note that a GPIOPinConfigure() function call is also required to properly
configure a pin for the USB function.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

282 February 22, 2017

GPIO

Returns:
None.

14.2.3.45 GPIOPinTypeWakeHigh

Configures pin(s) for use as a hibernate wake-on-high source.

Prototype:
void
GPIOPinTypeWakeHigh (uint32_t ui32Port,
uint8_t ui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as hibernate wake-
high inputs. This function provides the proper configuration for those pin(s).

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.46 GPIOPinTypeWakeLow

Configures pin(s) for use as a hibernate wake-on-low source.

Prototype:
void
GPIOPinTypeWakeLow (uint32_t ui32Port,
uint8_t wui8Pins)

Parameters:
ui32Port is the base address of the GPIO port.

ui8Pins is the bit-packed representation of the pin(s).

Description:
The GPIO pins must be properly configured in order to function correctly as hibernate wake-low
inputs. This function provides the proper configuration for those pin(s).

February 22, 2017 283

GPIO

The pin(s) are specified using a bit-packed byte, where each bit that is set identifies the pin to
be accessed, and where bit 0 of the byte represents GPIO port pin 0, bit 1 represents GPIO
port pin 1, and so on.

Note:
A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
These pins must be unlocked using direct register writes to the relevant GPIO_O_LOCK and
GPIO_O_CR registers before this function can be called. Please see the “gpio_jtag” example
application for the mechanism required and consult your part datasheet for information on
affected pins.

Returns:
None.

14.2.3.47 GPIOPinWakeStatus

Retrieves the wake pins status.

Prototype:
uint32_t
GPIOPinWakeStatus (uint32_t ui32Port)

Parameters:
ui32Port is the base address of the GPIO port.

Description:
This function returns the GPIO wake pin status values. The returned bitfield shows low or high
pin state via a value of 0 or 1.

Note:
This function is not available on all devices, consult the data sheet to ensure that the device
you are using supports GPIO wake pins.

A subset of GPIO pins on Tiva devices, notably those used by the JTAG/SWD interface and
any pin capable of acting as an NMI input, are locked against inadvertent reconfiguration.
Th