
Cortex-M4(F) Lazy Stacking and
Context Switching

Application Note 298

Released on: 16 March 2012
Copyright © 2012 ARM Limited. All rights reserved.
ARM DAI0298A (ID032612)

Cortex-M4(F) Lazy Stacking and Context Switching
Cortex-M4(F) Lazy Stacking and Context Switching
Application Note 298

Copyright © 2012 ARM Limited. All rights reserved.

Release Information

Proprietary Notice

Words and logos marked with © or ™ are registered trademarks or trademarks of ARM© Limited in the EU and other
countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may
be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be
adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the
product and its use contained in this document are given by ARM in good faith. However, all warranties implied or
expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any
loss or damage arising from the use of any information in this document, or any error or omission in such information,
or any incorrect use of the product.

Where the term ARM is used it means “ARM or any of its subsidiaries as appropriate”.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license
restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this
document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Table 1 Change history

Date Issue Confidentiality Change

16 March 2012 A Non-Confidential First release
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 2
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
1 Introduction
The Cortex-M4 processor is based on the ARMv7E-M architecture and is similar to the
Cortex-M3. It has an integer register bank for general data processing, which is the same as the
one in the ARM Cortex-M3, and a stack based exception model.

The Cortex-M4 products are available as:
• Cortex-M4 without Floating-point Unit (FPU)
• Cortex-M4F with a FPU.

Comparing the Cortex-M4F to the Cortex-M4 or Cortex-M3, the Cortex-M4F includes an
additional floating-point register bank ranging from S0 – S31, and several other registers of
which most are memory mapped:

Floating-point Status and Control Register (FPSCR)
This is a special register in the FPU and it is not memory mapped. It
contains control bit fields for controlling floating-point operations and a
number of status bit fields that indicate the status of the FPU. The VMSR
(Move to floating-point System Register from ARM Core Register) and
VMRS (Move to ARM Core Register from floating-point System Register)
instructions are used to transfer data between the FPSCR and general
purpose registers in the integer register bank.

Coprocessor Access Control Register (CPACR)
This register is located at address 0xE000ED88. To enable the FPU,
bits[23:20] of the CPACR, which are the CP10 and CP11 bit fields, must
be set to 0xF. By default, the floating-point unit is disabled at RESET.

Floating-point Context Control Register (FPCCR)
This register is located at address 0xE000EF34. This register controls the
context saving behavior. By default, it enables the lazy stacking behavior,
see Lazy stacking feature on page 7.

Floating-point Context Address Register (FPCAR)
This register is located at address 0xE000EF38. This register holds the
address location of the reserved space allocated in an exception stack
frame for floating-point registers which have not yet been saved to the
stack after an exception entry.

Note
 The FPCAR register points to a section of stack space within the current

stack. The address value in the FPCAR is automatically generated by the
hardware of the processor.

Floating-point Default Status Control Register (FPDSCR)
This register is located at 0xE000EF3C. This register holds the default
values of FPSCR.

In addition:

• The CONTROL Register, a special register, that is also available on the Cortex-M3, has
an additional bit field to support the FPU feature. Bit[2] of the CONTROL Register is
defined as Floating-Point Context Active (FPCA). This bit is set automatically when the
FPU is used, and cleared when a new context is started, for example when starting of an
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 3
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Interrupt Service Routine (ISR). The FPCA bit is available on the Cortex-M4F only. The
CONTROL Register is not memory mapped. You can access this register by using MSR
and MRS instructions.

• The EXC_RETURN code value which is used in the exception mechanism has an
additional bit field to define floating-point stack status. When the value of
EXC_RETURN[4] is 0, it indicates that the exception stack frame for an exception return
contains floating-point registers. If this bit is 1, then it means the exception stack frame
does not contain floating-point registers.

Note
 EXC_RETURN (Exception Return) is a code value generated automatically by the

Cortex-M processors when entering an exception handler. The value is stored in the Link
Register (LR) and is used at exception return. Several bits of this code are used to store
information about the status of the processor before the exception, for example, which
stack pointer was being used.

• The exception stack frame has an additional format type shown in Figure 1 on page 5
which permits automatic saving of registers, S0-S15 and FPSCR, in the FPU. This is in
addition to registers that are saved in the Cortex-M3 stack frame consisting of R0-R3,
R12, LR, PC, spacer. The original stack frame format type for Cortex-M3 is also used
when the stacking of floating-point registers is not required.

With the requirements outlined by the Procedure Call Standard for the ARM Architecture
(AAPCS), a C function must preserve those registers in S16-S31 only when they are used during
the execution of the function. The other registers in the FPU, that is, S0-S15 and FPSCR, are
always saved automatically. These registers can also be modified by a C function.

To permit an interrupt handler to be written as a normal C function, the processor is required to
automatically save the S0-S15 registers and FPSCR on the stack when the current contents of
the floating-point registers might be required later.

• If the FPU has been used, indicated by 1 in the FPCA bit in the CONTROL Register, the
processor has to automatically save S0-S15 and FPSCR on the stack, in addition to the
R0-R3, R12, LR, PC and the spacer registers, which are already saved in an existing
Cortex-M stack frame. See the stack frame, on the right side of Figure 1 on page 5 for
more information.

• If the FPU has not been used, indicated by 0 in the FPCA bit in the CONTROL Register,
only the R0-R3, R12, LR, PC and spacer registers have to be saved. See the stack frame,
on the left side of Figure 1 on page 5 for more information.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 4
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Figure 1 Exception stack frame without and with floating-point register storage

The stack frame type being used is determined by hardware automatically based on settings in
the FPCCR and whether the FPU has already been used in the current context, as indicated by
FPCA bit in the CONTROL special register. If the FPCA is set and the automatic state saving
feature has been enabled, the exception stack frame with floating-point storage is then used.
This is because the register values in the FPU might be required by the current context later, after
the interrupt handling is completed.

The stacking of floating-point registers has the following effects:
• increases stack frame size
• potentially increases interrupt latency in interrupt processing
• increases context switching time in an embedded Operating System (OS).

Because the presence of the two possible stack frame formats, C functions with arguments
passed on the stack have to take the value of EXC_RETURN into account when extracting the
arguments from the stack.

R0

R1

R2

R3

R12

LR

PC

xPSR

Exception stack
frame without
floating- point

storage

{aligner}

Decreasing
memory
address

IRQ top of
stack

R0

R1

R2

R3

R12

LR

PC

xPSR

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

FPSCR

{aligner}
Pre-IRQ top of stack

Exception stack
frame with

floating-point storage

Pre-IRQ top of stack
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 5
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
For interrupt handling in applications without an OS, the automatic hardware state preservation
is sufficient and is easy to use. You can write interrupt handlers as normal C functions, and the
automatic stacking mechanism handles the required floating-point register stacking and
unshackling if required.

For developers of an embedded OS, the situation is more complex. To permit a multi-tasking
system to use the FPU in multiple tasks, you must update an OS or Real-Time Operating System
(RTOS) to handle context saving of the extra registers, S0-S31, and FPSCR, contained in the
FPU. During context switching, the OS must:

1. Determine whether an application task has used the FPU, using bit[4] of EXC_RETURN.

2. Save the floating-point context if required.

3. Restore the floating-point context for the next task if required.

4. Switch to the next task using an exception return, with the EXC_RETURN code value
matching the stack frame type.

The automatic stacking mechanism handles only S0-S15 registers and the FPSCR. The OS has
to handle the saving and restoration of S16 to S31 registers manually.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 6
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
2 Lazy stacking feature
The Cortex-M4F adds a feature called lazy stacking. This feature avoids an increase of interrupt
latency by skipping the stacking of floating-point registers, if not required, that is:
• if the interrupt handler does not use the FPU, or
• if the interrupted program does not use the FPU.

If the interrupt handler has to use the FPU and the interrupted context has also previously used
by the FPU, then the stacking of floating-point registers takes place at the point in the program
where the interrupt handler first uses the FPU.

The lazy stacking feature is programmable. By default this is turned ON. The controlling of lazy
stacking is handled by the FPCCR. OS developers have to consider the effects of lazy stacking
when developing the context switching code.

If lazy stacking is to be enabled, then bit[31] in the FPCCR, named ASPEN, indicating always
save enable, and bit[30] named LSPEN, indicating lazy save enable must both be set to 1. This
is the default value. You can disable lazy stacking by setting LSPEN to 0.

When an application has previously used the FPU, indicated by bit[2] of the CONTROL
Register, FPCA is automatically set to 1. If an interrupt occurs, and if the lazy stacking feature
is turned ON, the processor reserves extra space in the stack frame for the S0-S15 registers and
FPSCR. However, the actual stacking of these registers does not take place, and bit[0] of
FPCCR, Lazy State Preservation Active (LSPACT) is set to 1 to indicate this. Bit[4] of the
EXC_RETURN value, generated at the exception entry is set to 0 to indicate that the exception
stack frame contains stack space for floating-point registers, although the actual register
contents is not present.

• If the interrupt handler does not use the FPU, then LSPACT stays HIGH until the end of
the interrupt. When returning from the interrupt, the processor hardware detects that bit[4]
of the EXC_RETURN is 0 and LSPACT is 1 indicating that the stack frame contains space
for floating-point registers, but they were not pushed onto the stack so the unshackling of
the floating-point registers is ignored.

• If the interrupt handler uses the FPU at some stage, the processor is stalled when the first
floating-point instruction take place, while the floating-point registers, that is, S0-S15
registers and FPSCR, are pushed to the stack, and LSPACT is cleared. The program
execution then continues. At the end of the interrupt handler, the processor hardware
detects that EXC_RETURN[4] is 0 and LSPACT is 0, indicating that the stack frame
contains pushed floating-point registers and unstacks them accordingly.

If lazy stacking is disabled, the processor always pushes the floating-point registers to the stack
at exception entry and unstacks them at interrupt return. This increases interrupt latency.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 7
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
You can use the following setup shown in Table 2 depending on the application:

Table 2 FPCCR setup procedure

LSPEN ASPEN Scenarios

0 0 No automatic state preservation. You can use this setting:
1. In applications without an embedded OS or multi-task

scheduler, if none of the interrupt or exception handlers
use the FPU.

2. In application code where only one exception handler
uses the FPU. If multiple interrupt handlers use the FPU,
they must not be permitted to be nested. This can be done
by setting them to the same priority level.

0 1 Lazy stacking disabled, automatic state saving enabled.
CONTROL.FPCA is automatically set to 1 when floating-point
is used. At the exception entry, the floating-point registers
S0-S15, and FPSCR are pushed to the stack if CONTROL.
FPCA is 1.

1 1 Lazy stacking enabled, automatic state saving enabled.
CONTROL.FPCA is automatically set to 1 when floating-point
is used. If CONTROL.FPCA is 1 at the exception entry, the
processor reserves space in the stack frame and sets LSPACT to
1. But the actual stacking does not happen unless the interrupt
handler uses the FPU.

1 0 Invalid configuration.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 8
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
3 Example lazy stacking scenarios
The follow diagrams show a few scenarios for Cortex-M4F exception entry and exception
returns with lazy stacking enabled.

Figure 2 shows the case in which there is no floating-point operation in the interrupted main
program since reset, and no floating-point operation in the ISR.

Figure 2 Exception handling with no floating-point operation in the interrupted program

If there is no previous floating-point operation in the interrupted main program, then FPCA
stays LOW. In this situation, the exception stack frame is the same as the Cortex-M3 processor
or a Cortex-M4 processor, without the FPU. EXC_RETURN[4] is 1 in Figure 2 to indicate that
the stack frame does not have floating-point contents.

Main
program

IRQ handler

Stack
Frame

CONTROL.FPCA

R0-R3, R12, LR, PC, xPSR

LSPACT

EXC_RETURN[4]

Stacking Unstacking
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 9
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
In Figure 3, there has been a floating-point operation in the interrupted main program since
reset, and there is no floating-point operation in the ISR.

Figure 3 Exception handling with floating-point operation in the interrupted program

In this case, space for the floating-point registers is reserved in the stack frame. These registers
are not pushed to the stack because lazy stacking is enabled by default.

Interrupted
main

program

IRQ handler

Stack
Frame

CONTROL.FPCA

R0-R3, R12, LR, PC, xPSR

LSPACT

EXC_RETURN[4]

Clear to 0 at
exception entry

Clear by
hardware

~EXC_RETURN[4]

Space reserved for S0-S15, FPSCR

Stacking Unstacking

Set by hardware
to indicate lazy

stacking pending

Restore of FP
registers ignored

because
LSPACT is 1

Saving of FP
registers skipped
to reduce latency

Set to 0 to
indicate stack
frame included

FP registers

FPCAR

Updated to
indicate location

of reserved
space for lazy

stacking
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 10
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Figure 4 shows a floating-point operation in the interrupted main program, and a floating-point
operation in the ISR.

Figure 4 Exception handling with floating-point operations in the interrupted program and ISR

If a floating-point operation is carried out during the execution of ISR, the floating-point
registers are saved to the reserved space using lazy stacking, indicated by the FPCAR. To do
this, the processor stalls to permit lazy stacking to take place, and continues to execute the
floating-point operation after the lazy stacking is complete, see Figure 4.

Note
 The reserved space does not include registers S16 to S31. These registers are not saved by the
hardware. An AAPCS compliant C compiler must preserve them across subroutine calls.

Figure 5 on page 12 shows nested interrupts, with floating-point operations in the interrupted
main program and in a higher priority interrupt handler.

Stack
Frame

CONTROL.FPCA

R0-R3, R12, LR, PC, xPSR

LSPACT

EXC_RETURN[4]

Clear to 0 at
exception entry

Cleared by
hardware

~EXC_RETURN[4]

Stacking Unstacking

Set by hardware
to indicate lazy

stacking pending

Restore of FP
registers carried

out because
LSPACT is 0

Saving of FP
registers skipped
to reduce latency

Set to 0 to indicate stack
frame included FP

registers

Before FP
instruction

execution, lazy
stacking carried

out

Space reserved for
S0-S15, FPSCR

Previous FP
context saved

Interrupted
main

program

IRQ handler

Floating-point
instruction detected

FPCAR

Updated to
indicate location

of reserved
space for lazy

stacking

(S0-S15,
FPSCR)
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 11
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Figure 5 Nested exception handling with floating-point operations in interrupted program and higher priority ISR

If there is no floating-point operation in the first lower priority interrupt handler, then there is
no requirement to reserve stack space for the floating-point registers when entering the higher
priority interrupt. As a result, the FPCAR is still pointing to the reserved space in the first
exception stack frame, see Figure 5.

Interrupted
main

program

Stack
Frame

CONTROL.FPCA

R0-R3, R12, LR, PC, xPSR
(2nd stack frame)

LSPACT

EXC_RETURN[4] for
lower priority IRQ

Clear to 0 at
exception entry

Clear by hardware after
FP context saving

~EXC_RETURN[4]

Stacking Unstacking

Set by hardware
to indicate lazy

stacking pending

Restore of FP registers
ignored because

EXC_RETURN[4] is 1

FPCA is 0, so no
requirement to
reserve stack
space for FP

registers

Set to 0 to
indicate

stack frame
included FP

registers

Stacking Unstacking

R0-R3, R12, LR, PC, xPSR
(1st stack frame)

Space reserved for
S0-S15, FPSCRFPCA is 1, so

reserve stack
space for FP

registers

EXC_RETURN[4]
 for higher

 priority IRQ Set to 1 to indicate
stack frame not

included FP registers

Previous FP
context saved

~EXC_RETURN[4]

Restore of FP
registers

carried out

IRQ
(low priority)

IRQ
(high priority)

Stack space used by lower priority IRQ handler

Stack space used by higher
priority IRQ handler

FPCAR

Updated to indicate location of
reserved space for lazy stacking

Floating-point
instruction detected

(in higher priority ISR)

Before FP
instruction

execution, lazy
stacking carried

out
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 12
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Figure 6 shows nested interrupts, with floating-point operations in the interrupted main program
and both lower and higher priority interrupts:

Figure 6 Nested exception handling with floating operations in interrupted programmed ISRs

Stack space used by lower priority IRQ handler

Interrupted
main

program

IRQ
(low priority)

Stack
Frame

CONTROL.FPCA

LSPACT

EXC_RETURN[4] for
lower priority IRQ

Clear to 0 at
exception entry

Clear by hardware after
FP context saving

~EXC_RETURN[4]

Stacking Unstacking

Set by hardware
to indicate lazy

stacking pending

FPCA is 1, so
reserve stack
space for FP

registers

Set to 0 to indicate
stack frame included

FP registers

R0-R3, R12, LR, PC, xPSR
(1st stack frame)

FPCA is 1, so
reserve stack
space for FP

registers

EXC_RETURN[4] for
higher priority IRQ

Set to 0 to indicate
stack frame included

FP registers

~EXC_RETURN[4]

Restore of FP
registers carried out

(LSPACT=0 and
EXC_RETURN[4]=

0)

Previous FP
context saved

Space
reserved

R0-R3, R12, LR, PC, xPSR
(2nd stack frame)

Space reserved for
S0-S15, FPSCR Previous FP

context saved

Restore of FP
registers

carried out

IRQ
(high priority)

FPCAR

Updated to indicate location of
reserved space for lazy stacking

Stack space used by higher
priority IRQ handler

(higher priority ISR)

Before FP
instruction

execution, lazy
stacking carried

out

instruction detected
(lower priority ISR)

Before FP instruction
execution, lazy

stacking carried out
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 13
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
If both the lower and higher priority interrupt handlers and the interrupted main program use
floating-point instructions, then the stack frame for both interrupts require space reserved for
the floating-point registers, see Figure 6 on page 13. The FPCAR is updated in both exception
entrances.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 14
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
4 Handling of context switching in a RTOS
When designing a RTOS supporting the Cortex-M4F, it is important that the context switching
code is aware of the lazy stacking mechanism.

Based on the floating-point usage of the application tasks, the possible arrangement for
floating-point context switching can be divided into three different cases:
• no floating-point operation in any application tasks
• only one application task uses the FPU
• multiple application tasks use the FPU.

4.1 Case 1: No floating-point operation in application tasks

If the application tasks have not used the FPU, as indicated by EXC_RETURN[4]=1, then there
is no requirement to handle floating-point context saving, as shown in Figure 7.

Figure 7 Context switching with no floating-point instructions in tasks

Typically the OS task scheduler is executed regularly, for example, triggered by the SysTick
timer. It is common for the context switching operation to be performed in the PendSV
exception handler. If context switching is required, the OS might request context switching by
setting the pending status bit of the PendSV exception. The PendSV handler runs after the
SysTick handler and before the new task context.

Note
 • PendSV is a standard exception type in Cortex-M processors. It is an interrupt-driven

request for system-level service. In an OS environment, you can use PendSV for context
switching when no other exception is active.

• There are alternate methods of handling context switching, depending on the
implementation of the particular OS.

When dealing with interrupt handlers:

• If multiple interrupt handlers use the FPU and these interrupts can be nested, then context
saving for these interrupt handlers are handled by the lazy stacking mechanism.

Task X
(floating-point unit not used)

OS
Task

scheduler

OS
Context switching

SysTick

FPCA
(CONTROL[2])

LSPACT

R0-R3, R12,
LR, PC,
xPSR

stacked

At exception entry,
EXC_RETURN[4] is 1 to
indicate there was no
floating-point state

Task Y
(floating-point unit not used)

R0-R3, R12,
LR, PC,
xPSR

unstacked

At exception exit, the new
EXC_RETURN[4] is 1 to
indicate there was no
floating-point state
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 15
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
• If one interrupt handler uses the FPU, or if multiple interrupt handlers use the FPU but the
priority levels of these interrupts are setup so that they are not permitted to be nested, then
there is no requirement to preserve floating-point states after the interrupt handlers have
completed their tasks. In such cases, you can disable the automatic saving of the
floating-point registers.

• If the interrupt handlers do not require the FPU, then you can disable it, and the design
works like a Cortex-M4 processor without a FPU.

Note
 Disabling the FPU might help to reduce power consumption.

ARM recommends that the context switching code within the OS checks for EXC_RETURN
bit[4] during context switching to ensure that floating-point operations are not used accidentally.
For example, a library object exported into the project might have been compiled with
floating-point instructions.

4.2 Case 2: Only one application task uses the FPU

When dealing with tasks for the FPU:

• If it is known that only one application task is going to use the FPU and no interrupt
handler is going to use it, then it is possible to omit the floating-point context saving
procedure.

• If any interrupt handler uses the FPU in addition to any one of the application tasks, then
the automatic saving feature must be enabled by setting ASPEN=1. You can enable the
lazy stacking feature by setting LSPEN=1, to permit a shorter interrupt latency if possible.
Because both LSPEN and ASPEN are set to 1 by default, the context saving for the
interrupt handlers within nested interrupt scenarios, are handled by the lazy stacking
mechanism automatically.

• If none of the interrupt handlers are using the FPU, you can set both LSPEN and ASPEN
to 0. In this way the stack space could be reduced by not having to reserve space for the
floating-point context.

If an OS is being ported from the Cortex-M3 processor, you must update the context switching
code to handle bit[4] of the EXC_RETURN value correctly. Also, you must check
EXC_RETURN bit[4] in each context switch to ensure that no other task has unexpectedly used
the FPU.

4.3 Case 3: Multiple application tasks use the FPU

A simple way to handle context switching is to always store and restore all floating-point
registers as shown in Figure 8 on page 17.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 16
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Figure 8 Context switching with floating-point instructions in multiple tasks

During context switching, which usually takes place within the PendSV exception, the
processor executes the VSTM instruction (also known as the Floating-point Store Multiple
command), which stores multiple floating-point registers to memory to store the S16 to S31
registers to the context data in the process stack or Task Control Block (TCB), depending on OS
implementation, as shown in Figure 8.

Before the VSTM instruction is executed, the processor detects the use of the FPU in a new
context while the S0-S15 registers and FPSCR from the previous context have not yet been
saved to the stack, (indicated by the LSPACT bit in FPCCR). This triggers the pending lazy
stacking, causing the floating-point registers S0-S15 and the FPSCR to be pushed to the
memory location specified by FPCAR.

The context switching code can then restore the context of the next task for registers S16 to S31
of the FPU. The restore of registers S0-S15, and the FPSCR can be handled in the exception
return when the PendSV exception ends. By setting both EXC_RETURN[4] and LSPACT to 0,
the restore of registers S0-S15 and FPSCR are automatic.

In this arrangement, each context switch for tasks requiring the FPU requires at least 2 x 34 =
68 cycles, using registers S0-S31 and FPSCR, to handle the store and restore of floating-point
registers, plus addition cycles in context switching software to check the status of bit[4] in
EXC_RETURN. The checking of the EXC_RETURN[4] bit must be performed within the
context switching software.

4.4 Other considerations

When creating a new application task, EXC_RETURN[4] must be set to 1, to use a return stack
without the floating-point registers.

Task X
(uses floating-point)

OS
Task

scheduler
(no floating-

point
operations)

OS
Context switching

(uses floating-point
instructions to save/

restore context)

SysTick

FPCA
(CONTROL[2])

LSPACT

R0-R3, R12,
LR, PC,
xPSR

stacked,
space

reserved for
s0-S15,
FPSCR

Save S16-S31 for Task X
VSTM R0!,{S16-S31}

When VSTM is decoded,
this triggers the delayed
context saving. S0-S15,
FPSCR are pushed to
the stack

Restore S16-S31 for Task Y
VLDM R0,{S16-S31}

At exception exit, LSPACT
is 0 and EXC_RETURN[4]
(Task Y) is 0, this triggers
unstacking of S0-S15,
FPSCR

At exception entry,
EXC_RETURN[4] (Task
X) is 0 to indicate
floating-point state

Task Y
(uses floating-point)

Floating-point instruction
used in the task

EXC_RETURN[4]
for Task X

EXC_RETURN[4]
for Task Y

FPCA is updated to
~EXC_RETURN[4]
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 17
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Note
 • When the CONTROL.FPCA bit, that is, bit[2] of CONTROL register is set as a result of

a floating-point operation, it stays HIGH for that application task. When this application
task is suspended, this information is stored on EXC_RETURN[4], that is:
— bit[4] of EXC_RETURN is LOW if CONTROL.FPCA is 1.

• If a task decides that it no longer requires the FPU, it can clear the CONTROL.FPCA bit.
The saved EXC_RETURN[4] must not be changed by the task scheduler when the
process is suspended because this bit indicates the size of the stack frame when the task
was last pre-empted.

When dealing with systems where the FPU is used by multiple tasks, the context switching code
can be designed in either of the following ways:

1. The context of the FPU is always saved and restored.

2. The context of the FPU is saved and restored only if the associated EXC_RETURN[4]
value is 0. This means the value of CONTROL.FPCA was 1 when the task was running,
before entering the context switching code.

Method 1 is simpler, but takes longer for each context switch and requires more memory space.

ARM recommends that:

• C compilers do not generate floating-point instructions when there is no floating-point
operation

• functions in run time libraries do not contain floating-point instructions when they contain
no floating-point operations.

Not following these recommendations results in increased times for interrupt latency, stack
memory size and context switching. See Tool support considerations on page 26 for more
information.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 18
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
5 Alternative context switching scheme
This section consists of:
• Concept of the lazy stacking context switching strategy
• Comparison of the two approaches on page 24
• Additional considerations on page 24.

5.1 Concept of the lazy stacking context switching strategy

You can develop an alternative context switching mechanism based on lazy stacking. This is
similar to lazy FPU stacking as implemented in a Linux kernel for classic ARM processors.

This method attempts to utilize the lazy context saving mechanism in the Cortex-M4F, so that
it carries out the saving and restoration of FP registers only when necessary. For example, when
there is only one application process using the FPU, then there is no requirement to carry out
any context saving of the floating-point registers, as shown in Figure 9.

Figure 9 Lazy context switching with floating-point instructions in only one task

The FPU is disabled when switching to another application task during context switching. When
the OS switches the context back to the last process that used the FPU, the unit is re-enabled by
the context switching code. Although the FPU is disabled, the context information inside it is
retained. The disabling or enabling of the FPU can be handled using the Co-Processor Access
Control Register (CPACR) at address 0xE000ED88.

If another application task uses the FPU, and the FPU is disabled, a fault exception is triggered:

• if the usage fault exception is enabled and priority permits it, the usage fault handler is
executed, otherwise

• the HardFault exception handler is executed.

When this occurs, the fault exception handler can then enable the FPU, and trigger the context
switching process by setting the PendSV pending status, see Figure 10 on page 20.

Task A
(uses floating-point)

Task A

Task B
(no floating-point

operation)

Context
switching

Context
switching

Floating-point
registers
context

Processor’s
context

Task A

Task C
(no floating-point

operation)

Context
switching

Task A
(uses floating-point)

Task A

Floating-
Point Unit Enabled Disabled Enabled
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 19
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Figure 10 Context switching with floating-point instructions in multiple tasks

During the execution of PendSV, when executing the first floating-point instruction, it also
triggers the lazy stacking operation to save registers S0-S15 and FPSCR into the reserved stack
space when Task A was pre-empted.

To look at the context switching, that is, the process in PendSV more thoroughly, see Figure 11
on page 21.

Task A
(uses floating-point)

Task A

Task B
(no floating-point

operation)

Context
switching

Context
switching

Floating-point
registers
context

Processor’s
context

Task A

Task C
(uses

floating-point)

Context
switching

Task C

Floating-
Point Unit Enabled Disabled Enabled

Floating
Point

instruction

Fault
exception

Task
A

PendSV

Task C
(uses

floating-point)

Disabled

Task C

FP context switching in PendSV
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 20
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Figure 11 Context switching

Because fault exceptions can be triggered by other fault conditions, the fault exception handler
HardFault or Usage Fault, must first check various Fault Status Registers and the status of the
CPACR register:

• If the FPU was turned off, that is, CP10 and CP11 field in CPACR were zeros, and if No
Coprocessor Usage Fault (NOCP) bit[3] in the Usage Fault Status Register is 1, then the
OS must:
— clear the NOCP bit
— enable the FPU (CP10 and CP11)
— set PendSV pending status
— update software variables used by the OS for context switching control.

Task A
(uses floating-point)

Task A

Context
switching

Context
switching

Floating-point registers context

Processor’s context

Task A

Task C
(uses floating

-point)

Context
switching

Task C

Floating-Point Unit

Enabled Disabled Enabled

1st Floating-
Point

instruction
after context

switch

Fault
exception

Task A

PendSV

Re-run 1st
floating-point

instruction after
context switch

Task C
(uses floating

-point)

Disabled

Task C

FP context switching in PendSV

LSPACT

FPCAR Reserved stack space in Task A stack frame

Save
S16-S31
(VSTM)

Reserved stack
space in Task
C stack frame

Load
S16-S31
(VLDM)

Task C

CONTROL.FPCA

Execution of VSTM cause S0-S15,
FPSCR being pushed to location

specified by FPCAR

LSPACT is 1, unstacking
of FP context is skipped

Return to task C with EXC_RETURN[4] = 0
(indicate that task C has previously used FP unit)

Task A(S0-S15,
FPSCR)

(S16-S31)

LSPACT is 0, unstacking
of s0-s15, FPSCR for
Task C is carried out

FPCA go low when
entering exception
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 21
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
• If the FPU was already turned on, and if the NOCP bit is 1, then the fault is related to
denial of access to a different coprocessor.

• If the NOCP bit is 0, then the fault is not caused by denial of access to a coprocessor.

If any of the interrupt service routines have to use the FPU, the PendSV operation is slightly
different. Consequently, the fault handler for handling the NOCP fault condition must check the
stacked IPSR, to determine whether the FPU is being called from an application task or an
interrupt service routine. After this information is obtained, the fault handler can then set up
software variables used by the PendSV accordingly. In this way the PendSV exception can
handle the floating-point register saving differently when the floating-point is used by an
interrupt service routine.

After the hard fault handler is executed, the interrupt service routine that used the FPU, and
triggered the NOCP fault, is resumed and starts the execution of the first floating-point
instruction. This triggers the lazy stacking so registers S0-S15 and FPSCR are pushed to the
stack space pointed to by FPCAR. The rest of the floating-point registers, S16-S31, if being
modified by the interrupt service routine, must be saved by the ISR itself, which is an AAPCS
requirement.

Figure 12 and Figure 13 on page 23 show the use of floating-point instructions in ISR with the
lazy stacking context switching scheme.

Figure 12 Use of floating-point instructions in ISR with lazy stacking context switching scheme (a)

Figure 13 on page 23 show the use of floating-point instructions in an ISR with a lazy stacking
context switching scheme.

Task A
(uses floating-point)

Context
switchingProcessor’s

context

Context
switching

1st Floating-Point
instruction in ISR

Fault
exception

PendSV Task B
resumed

Save
S16-S31
(VSTM)

Task B
(no floating-point

operation)
ISR

Interrupt
(use floating-point)

ISR

ISR resumed
with FP enabled

At the end of ISR, it must restore
s16-s31 (AAPCS requirement)

Task
A

1st Floating-Point
instruction after
context switch

Fault
exception

PendSV Task A

Task A resumed
with FP enabled
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 22
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Figure 13 Use of floating-point instructions in ISR with lazy stacking context switching scheme (b)

After the ISR is completed, the PendSV exception is executed. The PendSV can then:

• disable the FPU

• save the values of S16-S31 to the Task Control Block (TCB) and update software
variables in OS to indicate that the floating-point register contents for Task A are saved

• the next time Task A is resumed, reload all floating-point registers from the stack and
TCB.

Enabled

Task A

Floating-point registers context

Task A

Floating-Point Unit

Enabled Disabled Enabled

Disabled

LSPACT

FPCAR

Reserved stack space in Task A stack frame

Load S16-S31
(VLDM)

Task A / ISR

CONTROL.FPCA

Execution of FP instruction cause
S0-S15 and FPSCR to be pushed

onto a location specified by FPCAR
LSPACT is 1, unstacking
of FP context is skipped

Return to task A with EXC_RETURN[4] = 0
(indicate that task A has previously used FP unit)

Task A / ISR(S0-S15,
FPSCR)

(S16-S31)

LSPACT is 0,
unstacking of S0-S15
and FPSCR for Task

A, is carried out

FPCA goes LOW
when entering

exception

Task A

At the end of ISR, it must restore
S16-S31 (AAPCS requirement)

Task A

Task A

LSPACT is 1, unstacking
of FP context is skipped

FPCA set to 1 because of
floating-point usage in ISR
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 23
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
If an ISR that uses the FPU is triggered when the unit is enabled, there is no fault exception
triggered when the interrupt service routine uses the FPU. In such a case, the saving of the
floating-point registers is the same as normal floating-point context saving in software without
an OS.

If an ISR that uses the FPU is triggered during context switching, that is, during a PendSV
exception, and the interrupt triggering occurs after the FPU is disabled, then the fault handler
sets the PendSV pending state and the PendSV exception is re-entered after the current PendSV
completes its process. In this case the PendSV exception executes twice in a row. The second
execution of the PendSV handler disables the FPU again.

To use this lazy stacking context switching scheme, the ASPEN and LSPEN bits in FPCCR
must both set to 1, which is the default setting.

5.2 Comparison of the two approaches

Table 3 shows that both approaches have their own benefits.

In many cases, it can be difficult to estimate the actual performance gain, or potential loss, of
using the lazy stacking scheme unless real world benchmarking is carried out.

5.3 Additional considerations

The lazy stacking approach for context switching also brings additional considerations:

• Non-Maskable Interrupts (NMI) and HardFault handler must not use any floating-point
operations.

• If the usage fault is used to handle the enabling of the FPU, any interrupt service that
requires the FPU must have a lower priority than the usage fault handler.

• It requires that compiler generated code and runtime libraries do not generate any
floating- point instructions if the program code does not contain floating-point operations.
See Tool support considerations on page 26.

Table 3 Comparison of both approaches

Context saving strategy

Always save floating-point content Pros:
• Easier to implement
• Predictable timing.
Cons:
• Longer context switching time.

Lazy stacking Pros:
• Floating-point context switching is carried out only when required, reducing the average

context switching time.
Cons:
• If many tasks use the FPU, the overhead of using fault exception, and PendSV to handle

floating-point context switching might result in larger overhead.
• Can be difficult to debug certain tasks in halt mode, because registers in the FPU might

not hold the context of the current task.
• Latency for interrupt services that require the FPU, can increase as a consequence of

disabling the FPU.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 24
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
• If the application that you are working on also requires the use of fault handlers, the OS
fault handler must be executed first, and then if the fault is not caused by FPU trapping,
you must branch to your fault handlers.

• Application tasks must not enable the FPU themselves. So you must set CP10 and CP11
in CPACR. Otherwise, the context of another task is not saved, and consequently lost.

Note
 — CPACR is a 32-bit register. Both CP10 and CP11 have a 2-bit length. CP10 covers

bits[21:20] and CP11 covers bits[23:22]. The remainder of the register is reserved
including bits[19:0] and bits[31:24].

— To set CP10, CP11 and with Cortex Microcontroller Software Interface Standard
(CMSIS) compliant driver, you can use:
SCB->CPACR = (0x3 << (10*2)) | (0x3 << (11*2))
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 25
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
6 Tool support considerations
This section describes:
• Compilers and runtime library implications
• Current tool status on page 27.

6.1 Compilers and runtime library implications

OS content switching designed with the lazy stacking strategy requires that tool-chains, that is,
compilers and runtime libraries, behave in certain ways. Otherwise, such an OS might not able
to operate or could have very poor performance. Most of these requirements are listed in
Requirements 1 and 2. OS context switching with the always save floating-point context
strategy, can also benefit from these requirements.

Requirement 1
The compiler must not generate floating-point instructions for code that does not
use floating-point itself.

Note
 Use of floating-point includes calling a function which has a floating-point

argument.

If requirement 1 is not met, then floating-point instructions could be generated in
a large number of tasks and processes. This can increase the overhead in context
switching in addition to affecting latency in interrupt handling. The situation
could be worst where the OS code is compiled together with the applications. In
such cases the OS code might end up containing floating-point instructions.
This issue is made more complicated by the fact that the Embedded Application
Binary Interface (EABI) standard permits the use of the FPU for
non-floating-point operations. For example, if the code is compiled with compile
options which specify that a FPU is available, and the function being compiled
requires many registers for data processing and ends up fully utilizing the
registers in the general register bank, then the C compiler might use some of the
registers in the FPU as temporary data storage.

Note
 Such an arrangement is permitted in EABI, because it makes sense for application

processors where memory accesses can take a very long time if there are cache
misses. But in embedded applications where the Cortex-M4F is targeted, the
interrupt rate can be substantially higher and the floating-point context switching
overhead could reduce the performance of the system.

It is possible to compile the software files separately with different compiler
options, and link the object files together afterwards to ensure that only
application processes that use floating-point features are compiled with the
floating-point option.

Note
 This method might not be suitable for users of the gcc tool chain. Most C compiler

vendors providing a gcc based tool chain recommend their customers compile
and link the application in one step because with gcc, separating the compilation
and linking steps can be error prone.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 26
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
Requirement 2
Runtime library functions must not use the FPU unless they are floating-point
functions. The only special cases are:
1. print() or printf() function family
2. setjmp() and longjmp() functions.
This is similar to requirement 1, the use of floating-point instructions can increase
the overhead in context switching and interrupt services.
Ideally, the tool chain could also:
1. Provide a compilation switch (and/or pragma) that permits you to compile

sources so that it would report an error if floating-point use was found, as a
result of direct use of floating-point data in application code. This would
help you to detect accidental use of floating-point operations, for example,
through a macro, or in-lined assembly code, or in an argument auto-casted.
In addition:
a. The use of floating-point through a runtime function is assumed to be

detected only by arguments or a return value.
b. It is understood that the compiler cannot detect a call to a function

which contains floating point operations but uses no floating-point
arguments or a return value.

2. Provide a compilation switch that specifies not to use the upper 16 single
precision FPU registers. For cases where the floating-point is not heavily
used, for example, where there is minimum register pressure, and not using
the upper 16 registers would reduce context switching time.

3. Ensure the debugger does not enable the vector catch for NOCP when the
lazy stacking context saving strategy is used. Otherwise the processor is
halted automatically when the NOCP fault occurs. The debugger must also
permit accesses to the floating-point registers.

6.2 Current tool status

This section describes:
• ARM/Keil development tools on page 28
• GNUC C compiler (gcc) on page 28
• IAR Embedded Workbench for ARM on page 29.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 27
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
ARM/Keil development tools

Table 4 shows the number of development tool chains already support the Cortex-MF4.

Runtime library
This consists of:
• Currently memcpy() and printf() functions for Cortex-M do not use

floating-point instructions.
• A few functions in mathlib might contain floating-point instructions for

non-floating-point data.

In Keil MDK-ARM 4.21 (armcc v4.1.0.713), or later versions that are based on armcc version
4.1, the option --no_allow_fpreg_for_nonfpdata must be added to the Misc Controls field of the
C/C++ options to disable the use of floating-point instructions in non-floating point code.

GNUC C compiler (gcc)

If a program is compiled with the FPU option, gcc might make use of the floating-point registers
if register pressure is high, and running low on available registers for data processing. In some
cases, the memory copy might also utilize floating-point registers to hold data.

It is possible to avoid the use of floating-point instructions in non-floating-point code by using
-mfloat-abi=soft.

By default, libraries are built with –mfloat-abi=soft. So they must not contain floating-point
instructions. However, because there are various gcc vendors with different build options, you
might have to check with your gcc tool chain supplier to find out the status of the libraries.

Table 4 ARM C compiler related switches

Compile switch version Description

--no_allow_fpreg_for_nonfpdata armcc v4.1 patch 4, or later versions
of armcc v4 (default is disabled)
armcc v5.0 update 1,or later versions
of armcc v5 (default is enabled)

Disable the use of floating-point registers and
floating-point instructions for non-floating-point
data.

Note
 The opposite of this option is:
--allow_fpreg_for_nonfpdata

--fpu=none RealView compiler 2.0 or later. Selects no floating-point option, so no floating-point
code can be used.

Note
 An error is generated if your code contains float
types.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 28
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
IAR Embedded Workbench for ARM

Table 5 shows that the IAR C compiler does not use any floating-point registers in the following
two cases:

Table 5 IAR C compiler commands

Command Description

--fpu=none Floating-point is handled by library functions

--fpu=xxx Your code does not use floating-point
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 29
ID032612 Non-Confidential

Cortex-M4(F) Lazy Stacking and Context Switching
7 Additional Reading
This section lists publications by ARM and by third parties.

See Infocenter, http://infocenter.arm.com, for access to ARM documentation.

7.1 ARM publications

This book contains information that is specific to this product. See the following documents for
other relevant information:
• ARMv7-M Architecture Reference Manual (ARM DDI 0403)
• ARM Compiler toolchain, Compiler Reference (ARM DUI 0491)
• Cortex-M4 Devices Generic User Guide (ARM DUI 0553).

7.2 ARM Technical Support Knowledge Article

This article contains information that is specific to this product:
• How do I get the best performance when compiling floating-point code for Cortex-M4F?

See Infocenter,
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.faqs/ka15451.html, for
more information.
ARM DAI0298A Copyright © 2012 ARM Limited. All rights reserved. 30
ID032612 Non-Confidential

	Cortex-M4(F) Lazy Stacking and Context Switching
	1 Introduction
	2 Lazy stacking feature
	3 Example lazy stacking scenarios
	4 Handling of context switching in a RTOS
	4.1 Case 1: No floating-point operation in application tasks
	4.2 Case 2: Only one application task uses the FPU
	4.3 Case 3: Multiple application tasks use the FPU
	4.4 Other considerations

	5 Alternative context switching scheme
	5.1 Concept of the lazy stacking context switching strategy
	5.2 Comparison of the two approaches
	5.3 Additional considerations

	6 Tool support considerations
	6.1 Compilers and runtime library implications
	6.2 Current tool status

	7 Additional Reading
	7.1 ARM publications
	7.2 ARM Technical Support Knowledge Article

