
15/04/2020

1

Modeling by
State Machine Diagrams

Prof. Hugo Vieira Neto

2020/1

Objective

• To use state machine diagrams as a tool for
dynamic modeling of embedded systems:

– States and transitions

– Actions and activities

– Events and conditions

Embedded Systems

• Reactive artifacts

– React to external events

– Can generate internal events

– React to these internal events

• React = generate outputs, change states,
change internal variables (part of the state)

Embedded Systems

• It is necessary to represent the dynamic
behavior of the system as a function of time
and specific events, indicating how it will react
to these events (modeling)

• Statecharts serve very well to the purpose of
modeling the dynamic behavior of a system

State Machine Diagrams

• Possible states that a given system can go
through, as well as transitions between them
(associated to each triggering event and under
which constraints)

• Used by hardware and software designers to
represent finite state machines (FSM)

Finite State Machines

• State = stable situation of an FSM

• Transition = indicates the possibility of exiting
one state and entering another
– Trigger: event that causes the transition

– Guard: necessary constraint to carry out the
transition (besides the occurrence of the event)

– Behavior: action taken during the transition

• Event = relevant event in a well-defined
instant of time – can be internal or external

15/04/2020

2

Origins: Statecharts

• Professor David Harel
– Weizmann Institute (Israel), 1984

• Contributions:
– History

– Hierarchy

– Concurrence

• Reference:
– Harel, D., Statecharts: A Visual Formalism for Complex

Systems. Science of Computer Programming 8(3), pp.
231-274, 1987.

Basic Graphical Notation

• Frame with box for the name of the FSM

• Initial pseudo-state

• Final pseudo-state

• State

• Transition

Basic Graphical Notation Graphical Notation: States

• State (state name)

– Internal activity : do /

– Actions generated by internal event: event /

– Actions generated by entry or exit: entry /, exit /

State Name

entry / entry_action
do / internal_activity
exit / exit_action

Actions vs Activities

• Actions occur in transitions (atomic)

– Entry actions are performed when the transition
crosses the state boundary while entering

– Exit actions are performed when the transition
crosses the state boundary while exiting

• Activities take place while within the state
(end → change of state)

Graphical Notation: Transitions

• Transition:

– Trigger (trigger name)

– Guard: logical expression (implicit if)

– Behavior: list of actions separated by “;”

• Assignment, function call, output activation, etc.

trigger [guard] / behavior

15/04/2020

3

Events vs Guards

• Types of triggers:
– Function call

– Asynchronous signal arrival: IRQ, message

– Passage of time (counted from entering the state):
after(period) or at(instant)

• Types of guards:
– Logical operators: ==, !=, <, >, ...

– Generic operators: is_in(state), ...

– [else]

Example: Elevator Control

Example: Enrollment Process

Superstate
(hierarchy)

Exercise 1

• Sketch a state machine diagram that models
the dynamic behavior of operating mode
changes for an ARM Cortex-M4 core

• Consider only the operating situation in which
special registers PRIMASK = 1, FAULTMASK = 1
and CONTROL = 0

• Start by asking what are the events of interest
for the operating situation above

Exercise 1

• Consider intermediate states of stacking,
unstacking and tail-chaining, if that is the case

• In the representation of transitions caused by
the execution of an instruction that causes an
exception return (ex: BX LR), consider possible
pending exceptions (bit)

• Use UML notation to characterize transitions:
event [guard] / action

Advanced Graphical Notation

• Initial pseudo-state

• Final pseudo-state

• Junction

• Selection

• Termination

• Fork / Join (concurrence)

• Shallow history and deep history H H*

15/04/2020

4

Initial and Final Pseudo-states

• States linked to the initial pseudo-state are those
in which the system can enter when initialized

– At least one is needed

– If there is more than one, the entry conditions for
each state must be specified

• States linked to the final pseudo-state are those
from which the system will no longer leave

– Any quantity is allowed

– No transitions to other states

Example: Junction

Example: Selection Example: Termination

Example: Concurrence (Fork/Join) Example: Shallow History

15/04/2020

5

FSM Implementation

• Approaches:

1. State selection

2. Event selection

3. State-Event Matrix

• State identification:

– Situation (outputs)

– Memory (variables)

FSM Implementation

• The current state is stored in a variable,
usually an enumeration of the states that
make up the FSM

• The event is detected (example: IRQ) and its
occurrence is reported by:

– Variable changed by ISR (bare metal)

– Asynchronous message from ISR to thread (RTOS)

State Selection

typedef enum {State_0, State_1, State_2} state_t;

volatile uint8_t Event = 0; // altered by ISR

void thread(void){

 state_t State = State_0; // FSM initial state

 while(1){

 switch(State){

 case State_0:

 if(Event == 1){

 // actions and change in state

 } // if

 break;

 ⁞

 } // switch

 } // while

} // thread

Project “fsm_state” from
workspace“EK-TM4C1294XL_IAR8”

Exercise 2

• Sketch a state machine diagram that describes
the dynamic behavior of the “fsm_states”
project

• How to implement entry and exit actions
(entry / and exit /) in the states and their
activities (do /) in the state selection
approach?

Event Selection

typedef enum {State_0, State_1, State_3} state_t;

volatile uint8_t Event = 0; // altered by ISR

void thread(void){

 state_t State = State_0; // FSM initial state

 while(1){

 if(Event){

 switch(State){

 case State_0:

 // actions and change in estate

 break;

 ⁞

 } // switch

 } // if

 } // while

} // thread

Project “fsm_event” from
workspace “EK-TM4C1294XL_IAR8”

Exercise 3

• Change the “fsm_event” project to show the
forward sequence of the 3-bit Gray Code on
LEDs D1, D2 and D3 of the EK-TM4C1294XL kit

• Tip: use a different state for each binary
output pattern

– 000 → 001 → 011 → 010 → 110 → 111 → 101 →
100 → 000 → ...

15/04/2020

6

State-Event Matrix

• Functions for each state are defined:
state_t func1(state_t curr){

 // actions

 return next; // mudança do estado

} // func1

• An array of pointers to the functions is created:
state_t (*matrix[N_EV][N_ST])(state_t) =

 {{func1, func2, func3},

 {func4, func5, func6}};

• The function corresponding to each detected
event is executed:
State = (*matrix[Event][State])(State);

State-Event Matrix Implementation

state_t f_0(state_t curr){

 // actions

 return next; // change in state

} // f_0

⁞

void thread(void){

 state_t (*matrix[N][M])(state_t) = {{f_0, f_1, f_2},

 {f_3, f_4, f_5}};

 state_t State = State _0; // FSM initial state

 while(1){

 if(Event){

 State = (*matrix[Event - 1][State])(State);

 Event = 0;

 } // if

 } // while

} // thread

Project “fsm_matrix” from
workspace “EK-TM4C1294XL_IAR8”

Exercise 4

• Sketch a state machine diagram that uses the
concept of hierarchy to describe the dynamic
behavior of the “fsm_matrix” project

• How to implement entry and exit actions
(entry / and exit /) in the states and their
activities (do /) in the state-event matrix
approach?

Supplementary Material

• Software based Finite State Machine (FSM) with
general purpose processors (Joseph Yiu)

• Blog: Máquina de Estados em C (Sergio Prado):

– https://sergioprado.org/maquina-de-estados-em-c/

• Videos: State Machine Diagram (YouTube):

– https://www.youtube.com/watch?v=_6TFVzBW7oo

– https://www.youtube.com/watch?v=UzUUZRK_Q6Y

– https://www.youtube.com/watch?v=ABA3TGQVhTg

Useful Tools

• Draw.io (drawing in the cloud)

– https://www.draw.io/

• UMLetino (drawing in the cloud)

– http://www.umlet.com/umletino/umletino.html

• Yakindu Statechart Tools (drawing/simulation)

– http://statecharts.org/

References

• UML State Machine Diagrams
– http://www.uml-diagrams.org/state-machine-

diagrams.html

• State Machine Diagrams: An Agile Introduction
– http://agilemodeling.com/artifacts/stateMachine

Diagram.htm

• Sparx Systems – State Machine Diagram Tutorial
– https://sparxsystems.com.au/resources/tutorials/

uml2/state-diagram.html

• Lucidchart - State Machine Diagram Tutorial
– https://www.lucidchart.com/pages/uml-state-machine-

diagram

https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://www.youtube.com/watch?v=_6TFVzBW7oo
https://www.youtube.com/watch?v=UzUUZRK_Q6Y
https://www.youtube.com/watch?v=ABA3TGQVhTg
https://www.draw.io/
http://www.umlet.com/umletino/umletino.html
http://statecharts.org/
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://agilemodeling.com/artifacts/stateMachineDiagram.htm
http://agilemodeling.com/artifacts/stateMachineDiagram.htm
http://agilemodeling.com/artifacts/stateMachineDiagram.htm
https://sparxsystems.com.au/resources/tutorials/uml2/state-diagram.html
https://sparxsystems.com.au/resources/tutorials/uml2/state-diagram.html
https://sparxsystems.com.au/resources/tutorials/uml2/state-diagram.html
https://sparxsystems.com.au/resources/tutorials/uml2/state-diagram.html
https://sparxsystems.com.au/resources/tutorials/uml2/state-diagram.html
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram

