15/04/2020

Modeling by
State Machine Diagrams

Prof. Hugo Vieira Neto
2020/1

Objective

* To use state machine diagrams as a tool for
dynamic modeling of embedded systems:
— States and transitions
— Actions and activities
— Events and conditions

Embedded Systems

* Reactive artifacts
— React to external events
— Can generate internal events
— React to these internal events

React = generate outputs, change states,
change internal variables (part of the state)

Embedded Systems

* It is necessary to represent the dynamic
behavior of the system as a function of time
and specific events, indicating how it will react
to these events (modeling)

 Statecharts serve very well to the purpose of
modeling the dynamic behavior of a system

State Machine Diagrams

* Possible states that a given system can go
through, as well as transitions between them
(associated to each triggering event and under
which constraints)

* Used by hardware and software designers to
represent finite state machines (FSM)

Finite State Machines

 State = stable situation of an FSM

* Transition = indicates the possibility of exiting
one state and entering another
— Trigger: event that causes the transition

— Guard: necessary constraint to carry out the
transition (besides the occurrence of the event)

— Behavior: action taken during the transition
* Event = relevant event in a well-defined
instant of time — can be internal or external

15/04/2020

Origins: Statecharts

* Professor David Harel

— Weizmann Institute (Israel), 1984
* Contributions:

— History

— Hierarchy

— Concurrence
* Reference:

— Harel, D., Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming 8(3), pp.
231-274, 1987.

Basic Graphical Notation
* Frame with box for the name of the FSM
* Initial pseudo-state @
* Final pseudo-state (@)

 State [:

* Transition

—_— 5

Basic Graphical Notation

state machine Bank ATI\.Q

service m in(card)
o Pf k
Service

Graphical Notation: States

* State (state name)
— Internal activity : do /
— Actions generated by internal event: event /
— Actions generated by entry or exit: entry /, exit /

(State Name \

entry / entry_action
do / internal_activity

exit / exit_action

Actions vs Activities

* Actions occur in transitions (atomic)
— Entry actions are performed when the transition
crosses the state boundary while entering
— Exit actions are performed when the transition
crosses the state boundary while exiting
 Activities take place while within the state
(end = change of state)

Graphical Notation: Transitions

* Transition:
— Trigger (trigger name)
— Guard: logical expression (implicit if)

— Behavior: list of actions separated by “;”

’

 Assignment, function call, output activation, etc.

trigger [guard] / behavior

15/04/2020

Events vs Guards

* Types of triggers:
— Function call
— Asynchronous signal arrival: IRQ, message
— Passage of time (counted from entering the state):
after(period) or at(instant)
* Types of guards:
— Logical operators: ==, I=, <, >, ...
— Generic operators: is_in(state), ...
— [else]

Example: Elevator Control

button pressed [chosenFloor = curreniFloor] / close door

Stopped Going Up

entry / open door do / go to floor

button pressed [chosenFloor = currentFloor] / close door

Going Down

do / go to floor

Example: Enrollment Process

(Enrollment

Scheduled

Open For
Enroliment

Ful Closed to
Enroliment

| cancelled

student dropped
[seminar size > 0]

Being
term Taught
started

student dropped
{seminar size = 0]

classes
end

closed

Superstate
(hierarchy)

Exercise 1

» Sketch a state machine diagram that models
the dynamic behavior of operating mode
changes for an ARM Cortex-M4 core

Consider only the operating situation in which
special registers PRIMASK = 1, FAULTMASK = 1
and CONTROL =0

Start by asking what are the events of interest
for the operating situation above

Exercise 1

* Consider intermediate states of stacking,
unstacking and tail-chaining, if that is the case

* In the representation of transitions caused by
the execution of an instruction that causes an
exception return (ex: BX LR), consider possible
pending exceptions (bit)

* Use UML notation to characterize transitions:
event [guard] / action

Advanced Graphical Notation

Initial pseudo-state @
Final pseudo-state (@)
* Junction °
* Selection O

Terminat'ion X —
Fork / Join (concurrence)
\—>

+ Shallow history and deep history (+) ()

15/04/2020

Initial and Final Pseudo-states Example: Junction
* States linked to the initial pseudo-state are those [tron, 7
in which the system can enter when initialized [e j { e J (e J

— At least one is needed
— If there is more than one, the entry conditions for
each state must be specified

 States linked to the final pseudo-state are those

[Rephy=5MS]

from which the system will no longer leave Fartrvetd Lorr

— Any quantity is allowed retrg s eretng s erein

— No transitions to other states [j (J [j
Example: Selection Example: Termination

sm Terminate

Running
Creting SME
[5hiS] Message Power Off ><
Terminate

Example: Concurrence (Fork/Join) Example: Shallow History
[Goncurert Regions [rnitees /

Applying Erakes

[Front]

Applying

[serisira
|< r@ ,,,,, I >|
[Rear

Rear Brakes

15/04/2020

FSM Implementation FSM Implementation
* Approaches: * The current state is stored in a variable,
1. State selection usually an enumeration of the states that
2. Event selection make up the FSM

3. State-Event Matrix * The event is detected (example: IRQ) and its

occurrence is reported by:

« State identification: — Variable changed by ISR (bare metal)
_ Situation (outputs) — Asynchronous message from ISR to thread (RTOS)
— Memory (variables)

State Selection Exercise 2
typedef enum {State_0, State_ 1, State 2} state_t; o . . .
volatile wints t Beant - 0; 7/ altered by ISR Sketch a state machine diagram that describes
‘) the dynamic behavior of the “fsm_states”
void thread(void) { -
state_t State = State_0; // FSM initial state project
while (1) {
switeh(State) (* How to implement entry and exit actions
case ate :
if (Bvent — 1) ((entry / and exit /) in the states and their
// t d ch t e . .
| gy Geone and changs in state activities (do /) in the state selection
| preak; approach?
} // switch Project “fsm_state” from
b // while workspace“EK-TM4C1294XL_|IAR8”
} // thread
Event Selection Exercise 3
typedef enum {State 0, State 1, State 3} state t; «“, ” .
volatile uint8 t Event = 0; // altered by ISR * Change the fsm_event prOJect to show the
) forward sequence of the 3-bit Gray Code on
void thread(void) { .
state_t State = State_0; // FSM initial state LEDs D1, D2 and D3 of the EK-TM4C1294XL kit
while (1) {
if (Bvent) { * Tip: use a different state for each binary
switch(State) {

case State_0:
// actions and change in estate

output pattern

break; —000 = 001 > 011 - 010 > 110 > 111 > 101 >
) 1 switen 100 = 000 - ...
}y /7 if Project “fsm_event” from
e workspace “EK-TM4C1294XL_IARS”

15/04/2020

State-Event Matrix

* Functions for each state are defined:
state_t funcl(state_t curr) {
// actions
return next; // mudanca do estado
} // funcl

* An array of pointers to the functions is created:
state_t (*matrix[N_EV][N_ST]) (state_t) =
{{funcl, func2, func3},
{funcéd4, func5, funco}};

State-Event Matrix Implementation

state_t f O(state_t curr){
// actions
return next; // change in state
} /7 £.0
4
void thread(void) {
state_t (*matrix([N][M]) (state_t) = {{f_0, £ 1, f_2},
{£f.3, £ 4, £.5}};
state_t State = State _0; // FSM initial state
while (1) {

if (Event) {
* The function corresponding to each detected State = (matrix(fvent - 1}[State]) (Stace);
event is executed: } /) Af ’ Project “fsm_matrix” from
State = (*matrix[Event] [State]) (State); } // while Workspace “EK-TMAC1294XL 1ARS”
} // thread —
Exercise 4 Supplementary Material

» Sketch a state machine diagram that uses the
concept of hierarchy to describe the dynamic
behavior of the “fsm_matrix” project

* How to implement entry and exit actions
(entry / and exit /) in the states and their
activities (do /) in the state-event matrix
approach?

Software based Finite State Machine (FSM) with
general purpose processors (Joseph Yiu)

Blog: Maquina de Estados em C (Sergio Prado):
— https://sergioprado.org/maquina-de-estados-em-c/

Videos: State Machine Diagram (YouTube):

— https://www.youtube.com/watch?v=_6TFVzBW700
— https://www.youtube.com/watch?v=UzUUZRK Q6Y
— https://www.youtube.com/watch?v=ABA3TGQVhTg

Useful Tools

* Draw.io (drawing in the cloud)
— https://www.draw.io/

* UMLetino (drawing in the cloud)
— http://www.umlet.com/umletino/umletino.html

* Yakindu Statechart Tools (drawing/simulation)
— http://statecharts.org/

References

UML State Machine Diagrams

— http://www.uml-diagrams.org/state-machine-
diagrams.html

State Machine Diagrams: An Agile Introduction

— http://agilemodeling.com/artifacts/stateMachine
Diagram.htm

Sparx Systems — State Machine Diagram Tutorial

— https://sparxsystems.com.au/resources/tutorials/
uml2/state-diagram.html

Lucidchart - State Machine Diagram Tutorial

— https://www.lucidchart.com/pages/uml-state-machine-
diagram

https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://sergioprado.org/maquina-de-estados-em-c/
https://www.youtube.com/watch?v=_6TFVzBW7oo
https://www.youtube.com/watch?v=UzUUZRK_Q6Y
https://www.youtube.com/watch?v=ABA3TGQVhTg
https://www.draw.io/
http://www.umlet.com/umletino/umletino.html
http://statecharts.org/
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://www.uml-diagrams.org/state-machine-diagrams.html
http://agilemodeling.com/artifacts/stateMachineDiagram.htm
http://agilemodeling.com/artifacts/stateMachineDiagram.htm
http://agilemodeling.com/artifacts/stateMachineDiagram.htm
https://sparxsystems.com.au/resources/tutorials/uml2/state-diagram.html
https://sparxsystems.com.au/resources/tutorials/uml2/state-diagram.html
https://sparxsystems.com.au/resources/tutorials/uml2/state-diagram.html
https://sparxsystems.com.au/resources/tutorials/uml2/state-diagram.html
https://sparxsystems.com.au/resources/tutorials/uml2/state-diagram.html
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram
https://www.lucidchart.com/pages/uml-state-machine-diagram

