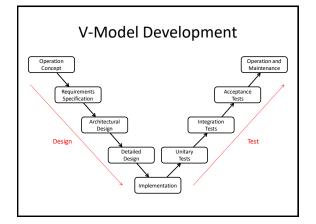
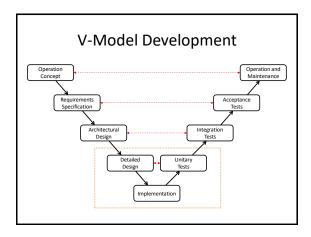
Embedded Systems Development Process

Prof. Hugo Vieira Neto 2020/1

Objective


- To study the main stages of the embedded systems development process :
 - V-Model development
 - Requirements engineering
 - System design
- Implementation and tests
- Useful UML diagrams


Development Stages

- Design phase
 - 1. Product design
 - 2. Requirements and systems engineering
 - 3. Architectural and detailed design
- Implementation phase
 - 4. Hardware development
 - 5. Software development
 - 6. Mechanics development

Etapas do Processo

- Test phase
 - 7. System integration
 - 8. Laboratory tests
 - 9. Field tests
- Production phase
 - 10. Product and production documentation
 - 11. Product packaging
 - 12. Product disposal

Requirements Engineering

- Input: requirements (informal, from customer, regulatory standards)
- Objective: to understand the problem
- Means: modeling, prototyping
- Output: requirements specification (formal, clear, precise, consistent, complete)
 - Functional: what the system does, how to use it
 Non-functional: performance, robustness,
 - development aspects
- WHAT

System Design

- Input: requirements specification
- Objective: to plan the solution
- Means: modeling, prototyping
- Output: design documentation (description of the planned solution)
 - Study of the hardware platform, available tools and libraries
 - System architecture design, detailed design of each block
- ноw

Implementation and Tests

- Input: design documentation
- Objective: to generate product
- Means: hardware assembly, software coding, integration, testing
- Output: production prototype, production documentation
- ACTION

Application Example

- GPS track viewer
 - The GPS has no display, just a standard RS-232 serial interface
 - The GPS is capable of collecting point sequences (latitude-longitude)
 - The GPS is able to transfer point sequences in GPX format
 - A device is desired to connect to the GPS and visualize the track at different scales

Device Functionalities

- 1. Data transfer in GPX format
- 2. Map and track visualization
- 3. Scale selection
- 4. Configuration

Problem Domain

- Georeferencing
- Latitude and longitude
- Distance computation
- Visualization scales
- GPX format specifications

Interfaces

- Physical:
 - RS-232 interface: voltage levels and connector
 - Color display with 1024 x 768 pixels
 - Buttons for human-machine interface
- Logical:
 - GPX format

Functional Requirements (1)

- FR1: The system should present a splash screen
 - FR1.1: The splash screen must display the device name
 - FR1.2: The splash screen must display the manufacturer brand
 - FR1.3: The splash screen must display the message "Press <OK> to proceed"

Functional Requirements (2)

- FR2: The system must be initialized using the "OK" button
 - FR2.1: The system must clear the splash screen and prepare to receive messages via the RS-232 serial interface
- FR3: The system must handle the reception of messages in GPX format
- FR4: The system must convert geographic coordinates to Cartesian coordinates

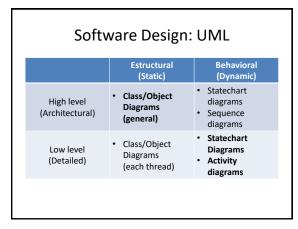
Functional Requirements (3)

- FR5: The system must plot on the screen the portion of the map that encompasses the coordinates of the track points
- FR6: The system must plot on the screen straight lines between the coordinates of the track points over the map
- FR7: The system must allow scaling using the "+" and "-" buttons
- ...

Non-functional Requirements

- NFR1: The system hardware must be based on the TM4C1294 microcontroller
- NFR2: The system development environment must be IAR EWARM V8
- NFR3: The system must be able to plot a minimum of 100 track points per second on the screen
- ...

Platform Study


- What is the plataform?
 - ARM Cortex-M4F core
 - Internal peripherals on the device
 - External peripherals available on the kit
 - Existing libraries for the chosen hardware
- Which part of the problem is already solved?
 - Graphic library for displaying points, lines, etc. on the display

Architectural Design

- Functional architecture (abstract):
 - Block diagram
 - Each block represents a system function
- Physical architecture:
 - Hardware block: functional unit
 - Software block: thread, function, structure
 - Class/object diagrams (UML) with active class/object notation are used

Detailed Design

- Hardware:
 - Schematic diagram for each functional unit
- Software:
 - Dynamic models for each thread or function
 - Statechart diagrams (UML)
 - Activity diagrams (UML)

Extra-class Activity

- Review the specifications for Lab Work 1 given by the professor and rewrite them in the form of functional and non-functional requirements
- When writing the requirements, have in mind what kind of test will be necessary to conduct in order to validate those requirements
- Sketch a block diagram for the solution for Lab Work 1 what are the essential blocks of the system an their relationships?
 - <u>https://www.smartdraw.com/block-diagram/</u>