
25/03/2020

1

CMSIS Standard
and TivaWare Library

Prof. Hugo Vieira Neto

2020/1

Objective

• To study the main features of the CMSIS
standard and TivaWare library:

– CMSIS-Core

– Project file structure

– Standard system exception names

– Hardware abstraction layers

CMSIS

Cortex Microcontroller Software Interface Standard

Main Components

• CMSIS-Core
– API for Cortex-M or Cortex-A cores

• CMSIS-Driver
– Generic drivers for communication systems, file systems,

graphic user interfaces, etc.

• CMSIS-DSP
– Digital signal processing library

• CMSIS-NN
– Neural network implementation library

• CMSIS-RTOS
– API for real-time operating systems

CMSIS-Core Component

• Basic system that provides access to the
Cortex-M processor core and device
peripherals, defining:

– Hardware abstraction layer

– Names for system exceptions

– Intrinsic functions [core instructions]

– SystemInit function [system initialization]

– SystemCoreClock variable [clock frequency]

Documentation

http://www.keil.com/pack/doc/cmsis/Core/html/index.html

http://www.keil.com/pack/doc/cmsis/Core/html/index.html

25/03/2020

2

File Structure CMSIS-Core Component

• Files (Cortex-M):

– startup_<device>.c or startup_<device>.s

• Exception vector table

– system_<device>.c and system_<device>.h

• Initialization (clock, FPU, WDT, bus wait states, etc.)

– <device>.h

• Hardware abstraction layer (HAL) for core registers and
device peripheral registers

File Structure in IAR

User program

CMSIS-Core device files

Project Options in IAR

System Exception Names

• Reset_Handler

• NMI_Handler

• HardFault_Handler

• MemManage_Handler

• BusFault_Handler

• UsageFault_Handler

• SVC_Handler

• DebugMon_Handler

• PendSV_Handler

• SysTick_Handler

Hardware Abstraction Layer

• Data structures with pointers to registers in
each device block

• Single header file (TM4C1294NCPDT.h)

• Example of use:

– GPIOK->DIR accesses the DIR register in block
GPIOK (address 0x40061400)

– See Section 10.5 of the TM4C1294NCPDT device
datasheet

25/03/2020

3

Datasheet Information

GPIO Base Adresses GPIO Register Map

TivaWare Library

• Also provides an abstraction layer

• Macros for register access

• Multiple header files with the base addresses
for each block and the offsets for each register
(inc/hw_*.h)

• Important: the target device for compilation
must be defined (e.g. PART_TM4C1294NCPDT)

– Options → C/C++ Compiler → Preprocessor

TivaWare Library

• Example of access to a register:
– HWREG(GPIO_PORTK_BASE + GPIO_O_DIR)

• The HWREG macro is defined in hw_types.h

• GPIO_PORTK_BASE = 0x40061000 defined
in hw_memmap.h

• GPIO_O_DIR = 0x00000400 defined in
hw_gpio.h

TivaWare Peripheral Driver Library

• Device driver API for device peripherals
(driverlib/*.h)

• Definitions of constants for configuration of
peripherals

• Examples (driverlib/gpio.h):
– GPIO_DIR_MODE_IN = 0x00000000

– GPIO_DIR_MODE_OUT = 0x00000001

– GPIO_DIR_MODE_HW = 0x00000002

Code Legibility

• Which of the equivalent code versions
presented below is more legible?
– GPIOK->DIR |= GPIO_PIN_1

– GPIOK->DIR |= 0x00000002

• See “TivaWare Peripheral Driver Library User’s
Guide”
– GPIOPinTypeGPIOInput(GPIO_PORTK_BASE,

GPIO_PIN_1)

• See inc/hw_memmap.h e driverlib/gpio.h

Exercise

• Select the “simple_uart” project from the
“EK-TM4C1294XL_IAR” workspace.

• Use a terminal emulator application such
as Tera Term with a serial connection to
“COMn: Stellaris Virtual Serial Port” to
communicate with the EK-TM4C1294XL kit.

25/03/2020

4

Exercise

• Notice that the project makes use of the
“uartstdio.c” file in “TivaWare_C_Series-
2.1.4.178\utils”

– Macro PART_TM4C1294NCPDT must be defined

for proper configuration of RX and TX pins

– Macro UART_BUFFERED must be defined if
interrupt-controlled buffering is to be used

Exercise

Exercise

• A quick look at the files “uartstdio.h” and
“uartstdio.c” provides important information:
– UART_RX_BUFFER_SIZE defines the receive buffer

size, which can be overriden

– UART_TX_BUFFER_SIZE defines the transmit buffer
size , which can be overriden

– UARTStdioIntHandler is the UART interrupt
handler name, which is different from the default
in “startup_TM4C1294.s”

Exercise

• Inspect the “simple_uart.c” file:
– What does the UARTInit function do?

– What happens if one removes the definition of
PART_TM4C1294NCPDT from the C/C++
Compiler Preprocessor options in IAR?

– How was the problem with the name of the UART
interrupt handler having a name other than the
default in “startup_TM4C1294.s” handled? Are
there alternative solutions? What are the
potential problems with them?

Exercise

• Make changes to the code so that the SysTick
handler besides alternating the state of LED
D1 also sends “SysTick_Handler\n” via UART

• Observe what happens in Tera Term – are the
messages received synchronized with changes
in the state of LED D1?

• Note: baud rate should be set to 9600 bps

Exercise

• Pause the program in IAR and inspect these
variables:
– g_ui32UARTTxWriteIndex

– g_ui32UARTTxReadIndex

– g_pcUARTTxBuffer

• What do these variables tell you? See comments
for “output ring buffer” in “uartstdio.c”

• What happens if the baud rate is lowered to 600
bps? And to 300 bps? Do not forget to reset both
sides of the connection (kit and Tera Term)

