
17/03/2020

1

ARM Cortex-M4 Exceptions

Prof. Hugo Vieira Neto

2020/1

Objective

• Study the main concepts of the exception
model in the ARM Cortex-M4:

– Thread mode e handler mode

– Stacking, unstacking and lazy stacking

– Tail-chaining, late arriving and POP preemption

Registers

Privileged access level

MSP = main SP
O.S. kernel
Exceptions

PSP = process SP
Applications
(threads)

CONTROL
Selects SP
Selects PL

PRIMASK/BASEPRI
Interrupt
masking

Stack Pointer

• One may work only with MSP

• The current SP is accessed as R13 or SP

• The SP is always aligned on 32 bits (i.e.
addresses which are multiples of 4)

• Instructions:

– PUSH (stacks)

– POP (unstacks)

• Full descending stack

Link Register

• Accessed as R14 or LR

• Stores the return address of a subroutine

• Must be saved before calling another
subroutine

Program Counter

• Accessed as R15 or PC

• The PC contains the address of the next
instruction to be executed (reason: pipeline)

• The address of an instruction is always even
(bit0 = 0)

• PC bit0 is used to indicate Thumb mode

– In branches, bit 0 of the PC must always be 1,
otherwise an exception will be raised.

17/03/2020

2

Special Registers

• Program Status Registers (xPSR):

– Application Program Status Register (APSR) – RW

– Interrupt Program Status Register (IPSR) – RO

– Execution Program Status Register (EPSR) – RO

• Access through specific instructions:

– MRS R0, APSR

– MSR APSR, R0

Program Status Registers

Interrupt Program Status Register

• “ISR_NUMBER” is different from IRQ number!

Add 16

Special Registers

• Interrupt Mask Registers:

– PRIMASK: used to enable / disable all interrupts
and exceptions (except NMI and HardFault)

– FAULTMASK: used to enable / disable fault
exceptions

– BASEPRI: defines interrupt masking from a priority
base threshold

• Instrutions MRS, MSR, CPSIE e CPSID (change
processor state + interrupt enable/disable)

Exception Masking

• BASEPRI = 0, PRIMASK = 0, FAULTMASK = 0
– Priority level 256
– All exceptions (priority <256) are serviced

• BASEPRI = X > 0, PRIMASK = 0, FAULTMASK = 0
– Priority level X
– Only exceptions with priority < X are serviced

• PRIMASK = 1, FAULTMASK = 0
– Priority level 0
– Only Reset, NMI and Faults (priority < 0) are serviced

• PRIMASK = 1, FAULTMASK = 1
– Priority level -1
– Only Reset and NMI (priority < -1) are serviced

Special Registers

• CONTROL
– Bit 1: defines the stack pointer (MSP or PSP)

– Bit 0: defines the access level (Privileged or User)

• Bit 0 has write-only access in privileged level –
once in user level, the only way to return to
privileged level is via an exception.

• Access by MRS and MSR instructions
– Use the Instruction Synchronization Barrier (ISB)

instruction after the MSR instruction for immediate
use of the new stack pointer

17/03/2020

3

Modes, Privileges and Stacks

• Thread Mode / Handler Mode
– Thread Mode: normal application execution
– Handler Mode: exceptions or interrupts

• Privileged / non-privileged execution
– Thread Mode: can be privileged or not
– Handler Mode: always privileged

• Main Stack / Process Stack
– Both stacks have their own pointer
– Exceptions always use MSP in handler mode
– Applications (thread mode) use the MSP or the PSP

Modes, Privileges and Stacks

Modes and Privileges Privileges

• In privileged level, the code has access to all
resources.

• In user level, the code cannot :

– Execute instructions such as CPSIE and CPSID,
which allow changing FAULTMASK and PRIMASK

– Access most System Control Block (SCB) registers

Exercise 1.1

• From the “EK-TM4C1294XL_IAR” workspace, select
the “simple_io_main_sp” project.

• Inspect the “startup_TM4C1294.s” file:
– What does the Reset_Handler function do?

• With the debugger stopped at the start of the main
function, check:

– Which processor registers have individualized bits? What
are the meanings of these bits?

– What is the state (mode) of the processor? Which
registers were used to obtain this information?

Exercise 1.2

• Set up a breakpoint at the first declaration of the
SysTick_Handler function and run the program until
it stops:

– What is the value of the LR register?

– What is the state (mode) of the processor?

• Change the NMIPENDSET bit of the ICSR register
(System Control Block) and run the program again:

– What happens?

– What is the value of the LR register?

– What is the state (mode) of the processor?

17/03/2020

4

Exercise 1.3

• Select the project “simple_io_process_sp”.

• Inspect the “startup_TM4C1294.s” file:
– What does the Reset_Handler function do

additionally?

• Redo the procedures in Exercise 1.2:

– What is the value of the CONTROL register?

– Was there any change in the values of the LR register?

Exceptions and Interrupts

• Any request to change the normal flow of a
program:

– Exception: synchronous, e.g. error detection

– Interrupt: asynchronous, e.g. peripheral event
occurrence

Cortex-M – General View

• Nested Vector Interrupt Controller (NVIC)

– Support for multiple interrupt sources

– Efficient handling of nested interrupts

– Flexible architecture (highly configurable)

– Intrinsic RTOS support

Cortex-M – General View

• Low latency interrupt architecture

• Some instructions with multiple execution
cycles can be interrupted

• Hardware controlled exception entry/exit

Cortex-M – General View

• Hardware controlled interrupt entry/exit

– Automatic context saving and restoring

– Handling of late arrivals of higher priority
interrupts

– Handling of pending interrupts without full
context restoring / saving (tail-chaining)

Exception States

• Inactive: neither pending nor active
• Pending: the exception was thrown, but has not

yet been serviced
• Active: exception servicing has started, but has

not yet been completed
– Servicing of one exception can interrupt another one

being serviced – in this case both exceptions are in the
active state

• Active and Pending: the exception is being
serviced and there is a pending exception from
the same source

17/03/2020

5

Exception Types

• Reset – priority -3 (thread mode)

• NMI – priority -2

• HardFault – priority -1

• Faults (MemManage, Bus, Usage)

• SVC – caused by the SVC instruction

• PendSV – service pending (e.g. context switching
after interrupt)

• SysTick – periodically caused by the SysTick timer

• IRQn – peripheral interrupt request

Fault Exception Types

• MemManageFault: memory access faults
detected by the MPU – if disabled, they
escalate to HardFault

• BusFault: other types of memory bus faults
than MemManage

• UsageFault: faults not related to the memory
bus (e.g. undefined instruction or invalid
state)

Exception Priorities Priority Definitions

• Core exception priorities are defined in the
System Control Block (SCB)

– SHPRn (System Handler Priority Registers)

• Peripheral interrupt priorities are defined in
the Nested Vectored Interrupt
Controller(NVIC)

– IPRn (Interrupt Priority Registers)

Causing Events

• Exceptions can be caused by events which are
internal or external to the processor

Processor State

• Thread mode after Reset

• Handler mode after any other kind of exception

17/03/2020

6

Exception Vector Table

See table in file
startup_TM4C1294.s!

Important Definitions

• Preemption: a higher priority exception can
cause preemption of an executing interrupt
service routine (handler)

• Return: occurs at the end of the execution of
an interrupt service routine (handler), in case

– There is no pending exception with sufficient
priority to be served (tail chaining)

– The routine that ended is not a late arrival
exception

Important Definitions

• Tail-chaining: if at the end of the execution of
a handler there is a pending exception able to
be handled, then the sequence of context
restoration (unstacking) followed by new
context saving (stacking) is not performed.

Tail-chaining Example

PUSH1 PUSH2 POP1 POP2

16 cycles 16 cycles 16 cycles 16 cycles

ISR1 ISR2

IRQ1

IRQ2

Priority

Traditional
Interrupt
Handling

ISR1 ISR2 PUSH

12 cycles

POP

12 cycles

TC

6

IRQ1

IRQ2

Priority

Cortex-M
Interrupt
Handling

Important Definitions

• Late arriving: a mechanism that speeds up
preemption if a higher priority exception
occurs during context saving (stacking) – in
this case the highest priority exception is
serviced first and then, by tail-chaining, the
lowest priority exception.

Late Arriving Example

ISR1 ISR2 PUSH

12 cycles

POP

12 cycles

TC

6

IRQ1

IRQ2

Priority

Cortex-M
Interrupt
Handling

IRQ1

IRQ2

Priority

Traditional
Interrupt
Handling

8

PUSH2 PUSH2 PUSH1

16 cycles

POP1

16 cycles

POP2

16 cycles

ISR1 ISR2

8

17/03/2020

7

Important Definitions

• POP preemption: a mechanism that speeds up
servicing of an exception that occurs during
context restoration (unstacking) – in this case
stacking is aborted and tail-chaining follows to
service the new exception.

POP Preemption Example (1)

POP2

8

POP2 PUSH2 PUSH1 POP1

16 cycles 8 16 cycles 16 cycles

ISR2 ISR1

IRQ1

IRQ2

Priority

Traditional
Interrupt
Handling

P .

X

ISR2 ISR1 PUSH

12 cycles

POP

12 cycles

TC

6

IRQ1

IRQ2

Priority

Cortex-M
Interrupt
Handling

POP Preemption Example (2)

P .

X

ISR1 ISR2 PUSH

12 cycles

POP

12 cycles

TC

6

IRQ1

IRQ2

Priority

Cortex-M
Interrupt
Handling

IRQ1

IRQ2

Priority

Traditional
Interrupt
Handling

PUSH1 PUSH2 POP1 POP2

16 cycles 16 cycles 16 cycles 16 cycles

ISR1 ISR2

Exception Servicing

• Occurs when there is an exception in the
pending state with sufficient priority* and
– The processor is in thread mode, or

– The pending exception has a higher priority than
an exception already being serviced (preemption
in handler mode)

*Sufficient priority means higher priority than
the priority base threshold in BASEPRI

Exception Servicing

• Automatic context saving (stacking) occurs in
the exception entry, as well as automatic
context restoration (unstacking) in the exit

• Cortex-M4 (without FPU):

Exception Servicing

• LR := EXC_RETURN (next slides)

• The processor obtains the handler address
from the vector table

• After stacking, execution branches to the
handler and the exception reaches the
active state

• If another exception of higher priority occurs
during stacking (late-arriving condition), then
it will be serviced beforehand

17/03/2020

8

EXC_RETURN – Cortex-M4 EXC_RETURN – Cortex-M4F

Exception Return

• Occurs when an instruction writes one of the
EXC_RETURN values to the PC

• Instructions used for exception return:

– LDR PC, ...

– LDM/POP including PC

– BX LR (preferred)

Exercise 2.1

• From the “EK-TM4C1294XL_IAR” workspace, select
the “simple_io_main_sp” project.

• Set up a breakpoint in the first instruction of the
SysTick_Handler function (Disassembly window) and
run the program until it stops:

– What is contents of the top of the stack (first 8 double
words)?

– Compare the contents of the top of the stack (first 8
double words) to the contents of the core registers. What
is the conclusion?

Exercise 2.2

• Redo Exercise 1.2 by changing the main function of
the “simple_io_main_sp” project to use the FPU.

– Was there any change in the values of the LR register?

– Which stack pointer is being used? Check the debugger's
Registers window (“CPU Registers” bank).

• Note: the FPU will be used if there is any operation
with float type variables and __FPU_USED is
defined as a macro (Options → C / C ++ Compiler →
Preprocessor).

Exercise 2.3

• Redo Exercise 1.3 by changing the main function of
the “simple_io_process_sp” project to use the FPU.

– Was there any change in the values of the LR register?

– Which stack pointer is being used? Check the debugger's
Registers window (“CPU Registers” bank).

– What is the difference between the “Current CPU
Registers” bank and the “CPU Registers” bank of the
debugger?

17/03/2020

9

Extraclass Activity

• Reading:

– Application Note: “Cortex-M4(F) Lazy Stacking and
Context Switching” (Setions 1 and 2)

– Book: “The Definitive Guide to ARM Cortex-M3
and Cortex-M4 Processors” (Section 13.3)

– Website: https://www.keil.com/pack/doc/CMSIS/
General/html/index.html#CM_Pack_Content
(Introduction)

https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content
https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content
https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content
https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content
https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content
https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content

