17/03/2020

ARM Cortex-M4 Exceptions

Prof. Hugo Vieira Neto

Objective

Study the main concepts of the exception
model in the ARM Cortex-M4:

— Thread mode e handler mode

— Stacking, unstacking and lazy stacking

— Tail-chaining, late arriving and POP preemption

2020/1
Registers Stack Pointer
= MSP = main SP * One may work only with MSP
= O.S. kernel
5 Exceptions * The current SP is accessed as R13 or SP
:.‘ S PSPA:prircgtcii‘:’fS P * The SP is always aligned on 32 bits (i.e.
b] (threads) addresses which are multiples of 4)
CONTROL . . .
= Selects SP Instructions:
Selects PL — PUSH (stacks)
s PRIMASK/BASEPRI — POP (unstacks)
» I Interrupt
masking .

Full descending stack

Link Register

* Accessed as R14 or LR
 Stores the return address of a subroutine

* Must be saved before calling another
subroutine

Program Counter

* Accessed as R15 or PC

* The PC contains the address of the next
instruction to be executed (reason: pipeline)

* The address of an instruction is always even
(bit0 = 0)

* PC bit0 is used to indicate Thumb mode

— In branches, bit 0 of the PC must always be 1,
otherwise an exception will be raised.

17/03/2020

Special Registers

* Program Status Registers (xPSR):
— Application Program Status Register (APSR) — RW
— Interrupt Program Status Register (IPSR) — RO
— Execution Program Status Register (EPSR) — RO
* Access through specific instructions:
— MRS RO, APSR
— MSR APSR, RO

Program Status Registers

3130 29 28/27 26 26 24/23 20119 16118 109 8 0

apsr nfz[c|v|a Reserved GER:0] | Reserved

PSR Reserved ‘ 1SR_NUMBER

Y TS N — | o | [
3130292827 26252423 5 098 0

psk [N[z]|c|v]a Reserved | GE[30] it | | ISR_NUMBER |

Resorvod]
Bit Description

ion flag
tinusble Instruction (IC) bits, IF-THEN instructicn status bit

1; trying to clear this bit will causs a fault exception
ch exception the processcr is handing

IGUTT
T
Exception number

Interrupt Program Status Register

* “ISR_NUMBER” is different from IRQ number!

Bits Name Function

1318 - Reserved

5:0] Exception number This is the number of the current exceplion
0= Thread mode
1= Reserved
2=NMI
3= HardFault
4-10 = Reserved
11 = SVCall

12,13 = Reserved
1= PendsV

15= SysTick

16 = IRGD

Special Registers

* Interrupt Mask Registers:
— PRIMASK: used to enable / disable all interrupts
and exceptions (except NMI and HardFault)
— FAULTMASK: used to enable / disable fault
exceptions
— BASEPRI: defines interrupt masking from a priority
base threshold
* Instrutions MRS, MSR, CPSIE e CPSID (change
processor state + interrupt enable/disable)

Exception Masking

¢ BASEPRI =0, PRIMASK =0, FAULTMASK = 0
— Priority level 256
— All exceptions (priority <256) are serviced
¢ BASEPRI =X >0, PRIMASK = 0, FAULTMASK = 0
— Priority level X
— Only exceptions with priority < X are serviced
* PRIMASK =1, FAULTMASK = 0
— Priority level 0
— Only Reset, NMI and Faults (priority < 0) are serviced
* PRIMASK =1, FAULTMASK = 1
— Priority level -1
— Only Reset and NMI (priority < -1) are serviced

Special Registers

* CONTROL
— Bit 1: defines the stack pointer (MSP or PSP)
— Bit 0: defines the access level (Privileged or User)
* Bit 0 has write-only access in privileged level —
once in user level, the only way to return to
privileged level is via an exception.
* Access by MRS and MSR instructions

— Use the Instruction Synchronization Barrier (ISB)
instruction after the MSR instruction for immediate
use of the new stack pointer

17/03/2020

Modes, Privileges and Stacks

¢ Thread Mode / Handler Mode
— Thread Mode: normal application execution
— Handler Mode: exceptions or interrupts
* Privileged / non-privileged execution
— Thread Mode: can be privileged or not
— Handler Mode: always privileged
* Main Stack / Process Stack
— Both stacks have their own pointer
— Exceptions always use MSP in handler mode
— Applications (thread mode) use the MSP or the PSP

Modes, Privileges and Stacks

by
ns

Operations Stacks
(privilege out of reset) (Main out of reset)
= Handler Privileged execution | Main Stack Used
E - An exception i being processed Full control 0S and Exceptio
83
-1
63
= i Thread Privileged/Unprivileged Main/Process
- No exception is being processed
=
IS - Normal code is executing
Privieged User
Handler mode Bk Bt
When running an exception handier (CONTROL{1) 0) (not alowed)
When not running an exception handler Thread mode Thread mode
(e.g., main program) (CONTROL[O] 0) | (CONTROL[0] 1)

CONTROL 11 can be either 0 or 1

Modes and Privileges

Operation Modes and Privilege Levels in Cortex-M3
Reprogram
Switch to user oy
Privileged mode by writing register
handler to CONTROL Excaviion Excenion
register P e ™ handier 1™
Privileged [Starti l i \ \ o[Privile
thread code = | Exception | Exception > P
[User),/ User),/
User thread > mode ™ > mode /™
Intermupt
exit
' Interrupt servica |
|
Intorrupt. | foutine (ISR)]
evant “ *
Il)
Main l i Fl
program | Stacking Unstacking |
i i
i 1
T T Time ™
Thread mode | Handler mode | Thread mode
{privileged) ' (privileged) i (privileged)

Privileges

* In privileged level, the code has access to all
resources.
* In user level, the code cannot :

— Execute instructions such as CPSIE and CPSID,
which allow changing FAULTMASK and PRIMASK

— Access most System Control Block (SCB) registers

Exercise 1.1

* From the “EK-TM4C1294XL_IAR” workspace, select
the “simple_io_main_sp” project.
* Inspect the “startup_TM4C1294.s" file:
— What does the Reset Handler function do?
* With the debugger stopped at the start of the main
function, check:
— Which processor registers have individualized bits? What
are the meanings of these bits?
— What is the state (mode) of the processor? Which
registers were used to obtain this information?

Exercise 1.2

* Set up a breakpoint at the first declaration of the
SysTick_Handler function and run the program until
it stops:

— What is the value of the LR register?
— What is the state (mode) of the processor?

* Change the NMIPENDSET bit of the ICSR register
(System Control Block) and run the program again:

— What happens?
— What is the value of the LR register?
— What is the state (mode) of the processor?

17/03/2020

Exercise 1.3

* Select the project “simple_io_process_sp”.
* Inspect the “startup_TM4C1294.s" file:

— What does the Reset_Handler function do
additionally?

* Redo the procedures in Exercise 1.2:
— What is the value of the CONTROL register?
— Was there any change in the values of the LR register?

Exceptions and Interrupts

* Any request to change the normal flow of a
program:
— Exception: synchronous, e.g. error detection

— Interrupt: asynchronous, e.g. peripheral event
occurrence

Cortex-M — General View

* Nested Vector Interrupt Controller (NVIC)
— Support for multiple interrupt sources
— Efficient handling of nested interrupts
— Flexible architecture (highly configurable)
— Intrinsic RTOS support

Cortex-M — General View

* Low latency interrupt architecture

* Some instructions with multiple execution
cycles can be interrupted

* Hardware controlled exception entry/exit

Cortex-M — General View

* Hardware controlled interrupt entry/exit
— Automatic context saving and restoring
— Handling of late arrivals of higher priority
interrupts
— Handling of pending interrupts without full
context restoring / saving (tail-chaining)

Exception States

* |nactive: neither pending nor active

* Pending: the exception was thrown, but has not
yet been serviced
* Active: exception servicing has started, but has
not yet been completed
— Servicing of one exception can interrupt another one
being serviced — in this case both exceptions are in the
active state
* Active and Pending: the exception is being
serviced and there is a pending exception from
the same source

17/03/2020

Exception Types

Reset — priority -3 (thread mode)
NMI — priority -2

HardFault — priority -1

Faults (MemManage, Bus, Usage)
SVC — caused by the SVC instruction

PendSV - service pending (e.g. context switching
after interrupt)

SysTick — periodically caused by the SysTick timer
IRQn — peripheral interrupt request

Fault Exception Types

* MemManageFault: memory access faults
detected by the MPU —if disabled, they
escalate to HardFault

* BusFault: other types of memory bus faults
than MemManage

* UsageFault: faults not related to the memory
bus (e.g. undefined instruction or invalid
state)

Exception Priorities

Properties of the different exception types

Exception IRQ Exception @ Vector address Activation

numberll numberll type or offsetiZl

1 Reset 3, the highest a0 < Asynchronous

2 14 NV 2 Asynchranous

3 13 Hard faut 1

4 12 Memory Configurablel?] Synchronous

management faull
-n Bus fault Configurablel] Synchronous when

precise, asynchronous.
when imprecise

6 0 Usage fault Configurablel o 1 Synchronous

710

n 5 SVCall Configurablel] Synchronous

12-13 -

14 2 PendSV ConfigurableS] Asynchronous

15 1 SysTick Configurablel 1c Asynchionous.

16 and above 0 and above Intermupt {IRQ) Configurablel] 90040 and abovel2l Asynchronous

Priority Definitions

* Core exception priorities are defined in the
System Control Block (SCB)
— SHPRn (System Handler Priority Registers)

* Peripheral interrupt priorities are defined in
the Nested Vectored Interrupt
Controller(NVIC)

— IPRn (Interrupt Priority Registers)

Causing Events

Exceptions can be caused by events which are
internal or external to the processor

ARM Processor

Internal ,»” Application Code ™\ External
s/ \ Exceptions
\)
svc ¢ Reset
PendSV SEEEEY L Interrupts
Faults e > Faults

SysTick

Processor State

* Thread mode after Reset

* Handler mode after any other kind of exception
ARM Processor

-~ Application Code™ >«

' ‘e— 1 Reset
1 i

sve L K
PendSV T -7 Exception
Fauls L Return
SysTick \, -~ Exception Code ™~
< Interrupts

i \
i —_—
b S { e

17/03/2020

Exception Vector Table

Address Exception #
0x40 +4°N External N 16+N
0x40 External 0 16
0x3C SysTick 15
0x38 PendSV 14
0x34 Reserved 13
g:jf; Dchu:‘;dconllar :f See table in file
startup_TM4C1294.s!
0x1C to 0x28 Reserved (x4) 7-10
0x18 Usage Fault 6
ox14 Bus Fault 5
ox10 Mem Manage Fault 4
0x0C Hard Fault 3
0x08 NMI 2
0x04 Reset 1
0x00 Initial Main SP NA

Important Definitions

* Preemption: a higher priority exception can

cause preemption of an executing interrupt
service routine (handler)

* Return: occurs at the end of the execution of

an interrupt service routine (handler), in case

— There is no pending exception with sufficient
priority to be served (tail chaining)

— The routine that ended is not a late arrival
exception

Important Definitions

* Tail-chaining: if at the end of the execution of
a handler there is a pending exception able to
be handled, then the sequence of context
restoration (unstacking) followed by new
context saving (stacking) is not performed.

Tail-chaining Example

Priority
IRQ1
IRQ2 -

Traditional

interrupt [QRCICIPONN 1sR1__ |IRTOT rusiz IETIE! ror2

Handling

16 cycles 16 cycles 16 cycles 16 cycles

Priority

IRQ1

IRQ2

Cortex-M

meerropt UGN 1sk1 [UC] isk2 JETTD

Handling
12 cycles 6 12 cycles

Important Definitions

* Late arriving: a mechanism that speeds up
preemption if a higher priority exception
occurs during context saving (stacking) —in
this case the highest priority exception is
serviced first and then, by tail-chaining, the
lowest priority exception.

Late Arriving Example

Priority
IRQ1

IRQ2
Traditional

interrupt [INAUINAIC] ISR1__ |e s 1SR2 POP2
Handling
8 16 cycles 16 cycles 8 16 cycles

Priority
IRQJ

IRQ2

Cortex-M

interrupt At sR1_ | o isk2 T

Handling

— —
12 cycles 6 12 cycles

17/03/2020

Important Definitions

* POP preemption: a mechanism that speeds up
servicing of an exception that occurs during
context restoration (unstacking) —in this case
stacking is aborted and tail-chaining follows to
service the new exception.

POP Preemption Example (1)

\ Priority

IRQ1

[

IRQ2

Traditional

ey eusiz IETEED e rusii ESTEE eorr P2

Handling

16 cycles 8 16 cycles 16 cycles 8

Priority
IRQJ

IRQ2

Cortex-M

merroot. L ore L s

Handling —— —
12 cycles X 6 12 cycles

POP Preemption Example (2)

Priority

IRQ1
IRQ2

Traditional

interrupt [JRCICIPONN] 1sR1_ [RRTOTT) rusiz IIETIE ror2

Handling

16 cycles 16 cycles 16 cycles 16 cycles

Priority

IRQ1
IRQ2 [

Cortex-M
N s T elc BTN ror

Handling
12 cycles X 6 12 cycles

Exception Servicing

* Occurs when there is an exception in the
pending state with sufficient priority* and
— The processor is in thread mode, or
— The pending exception has a higher priority than

an exception already being serviced (preemption
in handler mode)

*Sufficient priority means higher priority than
the priority base threshold in BASEPRI

Exception Servicing

* Automatic context saving (stacking) occurs in
the exception entry, as well as automatic
context restoration (unstacking) in the exit

¢ Cortex-M4 (without FPU):

<previous> }e—SP points here before interrupt
P+ Ox1C PSR
5P+ Ox18 PC
Decreasing | 5P + Ox14 LR

memary | SP+ 0x10 Ri2

address | SP + 0xOC RE
SP + 0x08 R2
SP + 0x04 R
SP + 0x00 RO le—SP paints here after interrupt

Exception Servicing

* LR := EXC_RETURN (next slides)

* The processor obtains the handler address

from the vector table

After stacking, execution branches to the

handler and the exception reaches the

active state

* If another exception of higher priority occurs
during stacking (late-arriving condition), then
it will be serviced beforehand

17/03/2020

EXC_RETURN — Cortex-M4

EXC_RETURN[31:0]

[Description

EXC_RETURN — Cortex-M4F

OxFFFFFFEE - OxFFFFFFFD
OxFFFFFFF1

Reserved

|Return to Handier mode.

Exception retum uses non-foating-point state from MSP.
Execution uses MSP after retum

OXFFFF FFF2 - OXFFFFFFF8

Reserved

EXC_RETURNI31:0] [Description
OxFFFR.FFEQ Reserved
OxFFFFFFE1 Return to Handler mode.

Exception retum uses floating-point state from MSP.
Execution uses MSP after retum,

OxFFFFFFF9

Return to Thread mode.
Exception retum uses non-floating-point state from MSP.
Execution uses MSP after retum

04FFFF FFE2 - OXFFFF.FFES

Reserved

OxFFFF FFFA - OXFFFFFFFC

Reserved

OxFFFFFFFD

OxFFFF FFFE - OKFFFFFFFE

Retum 1o Thread mode
Exception retum uses non-floating-point state from PSP.
Execution uses PSP after retum

|Reservea

OXFFFEFFEQ

O0xFFFFFFEA - 0xFFFFFFEC

Return to Thread mode.
Exception retum uses floating-point state from MSP
Execution uses MSP afier retum.

|Reserved

OXFFFEFFED

Return to Thread mode.
Exception retum uses floating-point state from PSP
Execution uses PSP after retum

OXFFFF FFEE - O<FFFFFFFO

Reserved

Exception Return

¢ Occurs when an instruction writes one of the
EXC_RETURN values to the PC

* Instructions used for exception return:
—LDRPG, ...
— LDM/POP including PC
— BX LR (preferred)

Exercise 2.1

* From the “EK-TM4C1294XL_IAR” workspace, select
the “simple_io_main_sp” project.

* Set up a breakpoint in the first instruction of the
SysTick_Handler function (Disassembly window) and
run the program until it stops:

— What is contents of the top of the stack (first 8 double
words)?

— Compare the contents of the top of the stack (first 8
double words) to the contents of the core registers. What
is the conclusion?

Exercise 2.2

* Redo Exercise 1.2 by changing the main function of

the “simple_io_main_sp” project to use the FPU.

— Was there any change in the values of the LR register?

— Which stack pointer is being used? Check the debugger's
Registers window (“CPU Registers” bank).

* Note: the FPU will be used if there is any operation
with float type variablesand FPU USEDis
defined as a macro (Options - C/ C ++ Compiler >
Preprocessor).

Exercise 2.3

* Redo Exercise 1.3 by changing the main function of
the “simple_io_process_sp” project to use the FPU.
— Was there any change in the values of the LR register?
— Which stack pointer is being used? Check the debugger's
Registers window (“CPU Registers” bank).

— What is the difference between the “Current CPU
Registers” bank and the “CPU Registers” bank of the
debugger?

17/03/2020

Extraclass Activity

Reading:

— Application Note: “Cortex-M4(F) Lazy Stacking and
Context Switching” (Setions 1 and 2)

— Book: “The Definitive Guide to ARM Cortex-M3
and Cortex-M4 Processors” (Section 13.3)

— Website: https://www.keil.com/pack/doc/CMSIS/
General/html/index.htmI#CM Pack Content
(Introduction)

https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content
https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content
https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content
https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content
https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content
https://www.keil.com/pack/doc/CMSIS/General/html/index.html#CM_Pack_Content

