
17/03/2020

1

ARM Cortex-M4 Architecture

Prof. Hugo Vieira Neto

2020/1

Objective

• To revise the main concepts of the ARM
Cortex-M4 core:

– Programmers model

– Memory model

– Load/Store architecture

– Pipeline and conditional execution

– ARM Architecture Procedure Call Standard

Architecture vs Organization

• Architecture = specification document

– Instruction Set

– Exceptions/Interrupts

– Memory Model

– Registers

– Ex: ARMv4, ARMv7, etc.

• There is no cost, can be obtained directly from
ARM’s website

Architecture vs Organization

• Organization = physical implementation
(silicon)

– Ex: ARM7TDMI, ARM Cortex-M4, etc.

• ARM sells core implementations in VHDL or
diffusion masks to licensed enterprises

ARM Cortex-M4

• ARMv7E-M architecture

• Thumb-2 instruction set

• 21 registers (32-bit)

• A single program status register

• Fixed memory map

– Memory-mapped peripherals

• No MMU (Memory Management Unit) or
cache memory

ARM Cortex-M4

• Interrupt controller is part of the processor
core macrocell

• Interrupt vector table contains addresses, not
instructions

• Interrupts automatically save and restore the
processor state

– Very efficient interrupt servicing

• Power management

17/03/2020

2

ARM Cortex-M4

• Designed to be programmed in C

– Even interrupt servicing

• Support for operating systems (RTOS)

– User/Supervisor Model

– SVC, PendSV and SysTick exceptions

– Memory Protection Unit (MPU)

• Cortex-M4F has a Floating Point Unit (FPU)

Cortex-M4 Simplified View

Block Diagram – TM4C1294

...

...

...

Cortex-M4 Memory Map

Memory Map – TM4C1294

Start End Description

0x0000 0000 0x000F FFFF On-chip Flash (1MiB)

0x0010 0000 0x01FF FFFF Reserved

0x0200 0000 0x02FF FFFF On-chip ROM (16 MiB)

0x0300 0000 0x1FFF FFFF Reserved

0x2000 0000 0x2003 FFFF On-chip SRAM (256KiB)

0x2004 0000 0x21FF FFFF Reserved

0x2200 0000 0x2234 FFFF Bit-band alias of SRAM

0x2235 0000 0x3FFF FFFF Reserved

0x4000 0000 0xDFFF FFFF Peripherals

0xE000 0000 0xFFFF FFFF Private Peripherals

Core Registers (32-bit)

• 13 general purpose registers

– R0 to R7 (low registers)

– R8 to R12 (high registers)

• 3 specific purpose registers

– R13 = Stack Pointer (SP)

– R14 = Link Register (LR)

– R15 = Program Counter (PC)

17/03/2020

3

Core Registers (32-bit)

• 5 special registers

– xPSR = Program Status Register

– PRIMASK = Priority Mask Register

– FAULTMASK = Fault Mask Register

– BASEPRI = Base Priority Mask Register

– CONTROL = Control Register

Load/Store Architecture

• Memory access:
– Only LD instructions read data from memory

– Only ST instructions write data to memory

– Data processing instructions do not have access to
memory

• Operations on data stored in memory require:
– Read from memory

– Operation (in register)

– Write to memory

Three-stage Pipeline

1. Fetch

– Fetch instruction from memory

2. Decode

– Decode the registers used in the instruction

3. Execute

– Read registers

– Perform operations

– Write registers

Pipeline: Ideal Situation

• All operations performed in registers →

6 instructions in 6 clock cycles (Cortex-M4)

Pipeline: Branch Effect

• Worst case: indirect branch (BX instrutcion) → 3 clock
cycles to complete the branch (Cortex-M4)

Conditional Execution

• If-Then (IT) Block

– Up to 3 conditional “then” (T) or “else” (E)
instructions can be added to the block

– Conditions the execution of up to 4 consecutive
instructions

17/03/2020

4

Exceptions and Interrupts

• Exceptions (faults, Debug, SVC, PendSV)

• 1 non-maskable interrupt (NMI)

• 1 SysTick interrupt

• 1 to 240 external interrupts with priority
control

– Implementation defines the number of interrupts

• Interrupt controller (NVIC) tightly coupled to
the processor core

Power Management

• Sleep modes

– Sleep Now

• Wait for Interrupt (WFI) / Wait for Event (WFE)

– Sleep On Exit

• Immediately after the exit from the lowest priority
interrupt service

– Deep Sleep

• Long term, PLL off

• Controlled by the NVIC

AAPCS

• Standardizes function calls in the ARM
architecture (ARM Architecture Procedure Call
Standard)

• Parameter passing to the function:
– First parameters in R0, R1, R2 and R3

– Other parameters in the stack

• Function return value:
– R0 (32-bit)

– R1:R0 (64-bit)

AAPCS

• Strongly related to automatic context saving in
interrupts

• Registers R0, R1, R2, R3 and R12 belong to the
called function

• Other registers (R4, R5, R6, R7, R8, R9, R10
and R11) belong to the calling function

• Stack alignment must be 64-bit :

– Even number of registers in PUSH/POP

AAPCS

• Who has the obligation to save the contents of
the registers used in a function?

– Called function must save R4 to R11 in the stack
before changing their contents (attention to 64-bit
alignment!)

– Called function can freely use R0 to R3 and R12
(must be saved in the stack, if necessary, by the
calling function)

Extraclass Activity

• Reading:

– ARM standard: “Procedure Call Standard for the
ARM Architecture (AAPCS)” (Section 5)

– Book: “The Definitive Guide to ARM Cortex-M3
and Cortex-M4 Processors” (Chapter 8)

– Book: “The Designer’s Guide to The Cortex-M
Processor Family” (Chapter 3, with special
attention to Sections “Priority and Preemption”
and “Exception Model”)

17/03/2020

5

Extraclass Activity

• Analyze the “c_asm” project in the
“EK-TM4C1294XL_IAR” workspace

– Check with the debugger how the parameters are
passed to the called function (Assembly) and how
the return value is passed to the calling function
(C language)

– Experiment with passing different amounts of
parameters, with different sizes (8, 16, 32, 64
bits), to the function implemented in Assembly

