17/03/2020

ARM Cortex-M4 Architecture

Prof. Hugo Vieira Neto
2020/1

Objective

* To revise the main concepts of the ARM
Cortex-M4 core:
— Programmers model
— Memory model
— Load/Store architecture
— Pipeline and conditional execution
— ARM Architecture Procedure Call Standard

Architecture vs Organization

* Architecture = specification document
— Instruction Set
— Exceptions/Interrupts
— Memory Model
— Registers
— Ex: ARMv4, ARMv7, etc.

* There is no cost, can be obtained directly from
ARM’s website

Architecture vs Organization

* Organization = physical implementation
(silicon)
— Ex: ARM7TDMI, ARM Cortex-M4, etc.

* ARM sells core implementations in VHDL or
diffusion masks to licensed enterprises

ARM Cortex-M4

* ARMV7E-M architecture
* Thumb-2 instruction set
e 21 registers (32-bit)
* Asingle program status register
* Fixed memory map
— Memory-mapped peripherals

* No MMU (Memory Management Unit) or
cache memory

ARM Cortex-M4

Interrupt controller is part of the processor
core macrocell

Interrupt vector table contains addresses, not
instructions

* Interrupts automatically save and restore the
processor state
— Very efficient interrupt servicing

* Power management

17/03/2020

ARM Cortex-M4

* Designed to be programmed in C

— Even interrupt servicing

 Support for operating systems (RTOS)

— User/Supervisor Model

— SVC, PendSV and SysTick exceptions

— Memory Protection Unit (MPU)

¢ Cortex-M4F has a Floating Point Unit (FPU)

Cortex-M4 Simplified View

" Cortex™-M4

Nested Vectored
Interrupt Controller

Wake Up Interrupt
Controller Interface

CPU (with DSP Extensions) FPU
Code Data Debu
Interface Watchpoint Accesgs
Flash Patch
Port
Memcry Bus & Breakpoint
Protection Matri
i e Serial
Unit ITM Trace Wire
SRAM & Viewer,
Peripheral ETM Trace Trace
Interface Port

Block Diagram — TM4C1294

JTAG/ISWD

Boot Loader
DriverLib

ARM®
Cortex™-MaF
ROM
(120MHz)
System ——
Control and ETM PPV | oCode bus | Flash
Clocks (1024KB)
(wl Precis. Ose.) wic || mpu |K———
ICode bus

AES & CRC
Etheret Boot Loader

System Bus

Cortex-M4 Memory Map

External Peripheral

{ |Code Space

External RAM

Peripheral

RAM

e ADODODOD

i
E0100000
0040000

£0000000

1GB

1GB

60000000
%GB
0000000
%GB
20000000
%GB
00800800

Memory Map — TM4C1294

I S S N T

0x0000 0000
0x0010 0000
0x0200 0000
0x0300 0000
0x2000 0000
0x2004 0000
0x2200 0000
0x2235 0000
0x4000 0000
0xE000 0000

0XO0OF FFFF
OXOLFF FFFF
OXO2FF FFFF
OX1FFF FFFF
0x2003 FFFF
OX21FF FFFF
0x2234 FFFF
OX3FFF FFFF
OXDFFF FFFF
OXFFFF FFFF

On-chip Flash (1MiB)
Reserved
On-chip ROM (16 MiB)
Reserved
On-chip SRAM (256KiB)
Reserved
Bit-band alias of SRAM
Reserved
Peripherals

Private Peripherals

Core Registers (32-bit)

* 13 general purpose registers
— RO to R7 (low registers)
— R8 to R12 (high registers)

* 3 specific purpose registers
— R13 = Stack Pointer (SP)
— R14 = Link Register (LR)
— R15 = Program Counter (PC)

17/03/2020

Core Registers (32-bit)

* 5 special registers
— XPSR = Program Status Register
— PRIMASK = Priority Mask Register
— FAULTMASK = Fault Mask Register
— BASEPRI = Base Priority Mask Register
— CONTROL = Control Register

Load/Store Architecture

* Memory access:
— Only LD instructions read data from memory
— Only ST instructions write data to memory
— Data processing instructions do not have access to
memory
* Operations on data stored in memory require:
— Read from memory
— Operation (in register)
— Write to memory

Three-stage Pipeline

1. Fetch

— Fetch instruction from memory
2. Decode

— Decode the registers used in the instruction
3. Execute

— Read registers

— Perform operations

— Write registers

Pipeline: Ideal Situation

Cycle
Operation

ADD
SuB
ORR

AND
ORR
EOR

F-Fetch D-Decode E -Execute

* All operations performed in registers -
6 instructions in 6 clock cycles (Cortex-M4)

Pipeline: Branch Effect

Cycle

Address Operation
0xB000 BX r5
0x8002 SUB
0xB004 ORR
OxBFEC AND
0xBFEE ORR
0xBFF0 EOR

F-Fetch D -Decode E-Execute
* Worst case: indirect branch (Bx instrutcion) = 3 clock
cycles to complete the branch (Cortex-M4)

Conditional Execution

e If-Then (IT) Block
— Up to 3 conditional “then” (T) or “else” (E)
instructions can be added to the block

— Conditions the execution of up to 4 consecutive
instructions

ITTET EQ MOVEQ
Inst 1

ADDEQ
Inst 2
a8) sume
Inst 3

Inst 4 ORREQ

17/03/2020

Exceptions and Interrupts

¢ Exceptions (faults, Debug, SVC, PendSV)
* 1 non-maskable interrupt (NMI)
e 1 SysTick interrupt

* 1to 240 external interrupts with priority
control
— Implementation defines the number of interrupts

* Interrupt controller (NVIC) tightly coupled to
the processor core

Power Management

* Sleep modes
— Sleep Now
* Wait for Interrupt (WFI) / Wait for Event (WFE)
— Sleep On Exit

* Immediately after the exit from the lowest priority
interrupt service

— Deep Sleep
* Long term, PLL off

Controlled by the NVIC

AAPCS

* Standardizes function calls in the ARM
architecture (ARM Architecture Procedure Call
Standard)

* Parameter passing to the function:

— First parameters in RO, R1, R2 and R3
— Other parameters in the stack
* Function return value:
— RO (32-bit)
— R1:RO (64-bit)

AAPCS

Strongly related to automatic context saving in
interrupts

Registers RO, R1, R2, R3 and R12 belong to the
called function

* Other registers (R4, R5, R6, R7, R8, R9, R10
and R11) belong to the calling function

Stack alighment must be 64-bit :

— Even number of registers in PUSH/POP

AAPCS

* Who has the obligation to save the contents of
the registers used in a function?

— Called function must save R4 to R11 in the stack
before changing their contents (attention to 64-bit
alignment!)

— Called function can freely use RO to R3 and R12
(must be saved in the stack, if necessary, by the
calling function)

Extraclass Activity

* Reading:

— ARM standard: “Procedure Call Standard for the
ARM Architecture (AAPCS)” (Section 5)

— Book: “The Definitive Guide to ARM Cortex-M3
and Cortex-M4 Processors” (Chapter 8)

— Book: “The Designer’s Guide to The Cortex-M
Processor Family” (Chapter 3, with special
attention to Sections “Priority and Preemption”
and “Exception Model”)

17/03/2020

Extraclass Activity

Analyze the “c_asm” project in the
“EK-TM4C1294XL_IAR” workspace

— Check with the debugger how the parameters are
passed to the called function (Assembly) and how
the return value is passed to the calling function
(C language)

— Experiment with passing different amounts of
parameters, with different sizes (8, 16, 32, 64
bits), to the function implemented in Assembly

