
13/03/2020

1

Configuration of New
Projects in IAR EWARM

Prof. Hugo Vieira Neto

2020/1

Creation of a Project

• Create a folder with the name of the project in
the “Projects” folder

• Create the new project in the
“EK-TM4C1294_IAR8” workspace

– Select Menu Project → Create new project...

• Select Empty Project

• Save the project file inside the recently
created folder

Creation of a Project

• Create a “src” folder to store the source-code
files of the new project

• Copy the files from the “template” folder to
the recently created “src” folder

Project Files

• Click with the right mouse button over the
recently created project in the workspace
and add the files :
– Startup file startup_TM4C1294.s

– Either system file system_TM4C1294.c
(if the driverlib library will not be used)
or system file system_TM4C1294_TW.c
(if the driverlib library will to be used)

– Your own source-code files for the project application
(ASM, C or C++)

Project Files

• If the “driverlib” library will be used in the
project, add its object-code:
– driverlib.a

• Note: the library’s object-code location may
be found in the “simple_io_main_sp” project.

Project Options

• Click with the right mouse button over the
recently created projecto and select Options...

• General Options

– Target → Device: Texas Instruments
TM4C1294NCPDT

– Output file → Executable

– Library Configuration → Library: Normal

– Library Configuration → CMSIS: Use CMSIS

13/03/2020

2

Project Options

• C/C++ Compiler

– Preprocessor → Additional include directories:
$PROJ_DIR$\..\..\TivaWare_C_Series-2.1.4.178

• Linker

– List: Generate linker map file

• Debugger

– Setup → Driver: TI Stellaris

– Setup → Download: Use flash loader(s)

Pre Lab Work 1 Exercise

• Having the “simple_io_main_sp” project from
the “EK-TM4C1294_IAR8” workspace as basis,
create a new project for an application with
the following specifications:
– CPU clock frequency (PLL): 24MHz

– C compiler optimization level: low

– LED D4 must change state every 500ms

– Timing must be performed by software (delay
loops), that is, without using any hardware
interrupt mechanism

Pre Lab Work 1 Exercise

• In order to measure driving times accurately,
besides driving LED D4, simultaneously drive
some other pin from GPIO Port K (available in
the kit’s BoosterPack 2 interface connectors)

• With the aid of an oscilloscope connected
to the pin from GPIO Port K, calibrate the
software delay loops in order to obtain the
highest possible accuracy on timing

Pre Lab Work 1 Exercise

• After having calibrated the delay loops, redo
timing measurements for the following cases:

1. Different C compiler optimization levels

2. CPU clock frequency (PLL) of 120MHz

• Are there variations in software timing for the
cases above? Quantify them.

Pre Lab Work 1 General Idea

Setup

Loop

Pre Lab Work 1 General Idea

• Setup:
– Enable GPIO ports (System Control)

– Configure GPIO pins

• Loop:
– Change states of GPIO pins

– Generate software delays (loops)

– Repeat the process

• Calibrate the constants of the delay loops with
the aid of the oscilloscope

13/03/2020

3

Important

• For proper understanding of driverlib library
functions used in the “simple_io_main_sp”
project, check the TivaWare driverlib manual,
especially:

– Chapter 1 (Introduction)

– Chapter 2 (Programming Model)

– Chapter 14 (GPIO)

– Chapter 26 (System Control)

TivaWare Library

• “TivaWare_C_Series-2.1.4.178” folder

• Analyze the contents of the files:
– inc/hw_memmap.h

– inc/hw_gpio.h

– inc/hw_sysctl.h

Driverlib – GPIO

• API:
– driverlib/gpio.h

• Main functions:
– GPIOPinTypeGPIOInput

– GPIOPinTypeGPIOOutput

– GPIOPadConfigSet

– GPIOPinRead

– GPIOPinWrite

Driverlib – SYSCTL

• API:
– driverlib/sysctl.h

• Main functions:
– SysCtlClockFreqSet

– SysCtlPeripheralEnable

– SysCtlPeripheralReady

Clarity and Legibility

• The following code snippets are equivalent:
– GPIOPinWrite(GPIO_PORTF_BASE,

GPIO_PIN_4, GPIO_PIN_4);

– GPIOPinWrite(0x40025000, 0x00000010,

0x00000010)

• Which of the code snippets above is more
legible and easier to understand?

Clarity and Legibility

• The following code snippets are equivalent :
– GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE,

GPIO_PIN_0 | GPIO_PIN_4);

– GPIOPinTypeGPIOOutput(0x40025000,

0x00000011)

• Which of the code snippets above is more
legible and easier to understand?

• Note: GPIO_PIN_0=0x01;GPIO_PIN_4=0x10

