Apropriação em Bancada Computacional (ABaCo)

De Wiki DAINF
Edição feita às 17h04min de 24 de outubro de 2008 por Solanoalves (disc | contribs)

Tabela de conteúdo

Introdução

Um dos entraves enfrentados pelos professores e estudantes das áreas de Engenharia que têm como disciplina eletricidade, é o ensino e entendimento, este por parte dos alunos, de circuitos elétricos. Como cita [1], há uma dificuldade na construção da ponte que liga o embasamento teórico, este adquirido desde as disciplinas básicas tais como física e matemática, e as disciplinas que envolvem a prática em laboratório, o que faz com que o aproveitamento esperado seja prejudicado. Seguindo por uma das idéias levantadas na elaboração deste projeto, que no caso é a criação de um arcabouço para auxiliar no entendimento do aluno para com as aulas de laboratório e a familiarização com circuitos elétricos, o estudo se assemelha em partes ao programa REENGE [2] que tem como objetivo a criação de uma plataforma para ensino de modo a facilitar o entendimento. Um dos pontos-chave do projeto é a importância do baixo custo na construção do arcabouço, uma vez que toda a arquitetura, a princípio almejada, segue a filosofia livre. E um outro fator importante do projeto é o foco no curso de Engenharia de Computação. No curso de Engenharia de Computação, ofertado no campus de Curitiba pela Universidade Tecnológica Federal do Paraná (UTFPR), o primeiro relacionamento com os fundamentos da eletricidade e componentes com propriedades elétricas acontece no segundo semestre com a disciplina de Física 3, a qual intermedeia o aluno e os componentes elétricos pela primeira vez. Entretanto são poucos os alunos que conseguem absorver o que o laboratório propõe que é entender a teoria na prática, pelo pouco tempo que o aluno tem para entender o que ele deve fazer, por que deve ser assim o experimento e o que são as coisas com as quais ele está manipulando, o que converge para um único resultado: o professor certamente não terá tempo de explicar o porquê das coisas e conduzirá o aluno a fazer mecanicamente o experimento. Após concluir Física 3, o aluno então embarcará na disciplina de Fundamentos de Análise de Circuítos Elétricos, que irá aumentar o nível de entendimento, por parte do aluno, dos componentes eletrônicos e da manipulação e montagem de circuítos, as quais não estão solidamente entendidas. Como produto desse imperceptível entrave, o bom desenvolvimento do aluno durante a disciplina é prejudicado, novamente levando a uma busca pela solução mecanica, sem o entendimento claro, em busca de nota e aprovação ao final do semestre. Voltando ao segundo semestre, mais especificamente na disciplina de Oficinas de Integração 1, na qual um projeto deve ser realizado por um grupo no prazo de seis meses, alguns grupos acabam por não realizar o que gostariam, ou não conseguirem como pretendiam, quando o assunto envolve hardware e o motivo é evidente: ainda não há carga teórica e nem prática suficiente para esses alunos. É com base nesses pequenos problemas, que futuramente se tornaram grandes, que o projeto{?} ABaCo tem como foco auxiliar, criando um arcabouço no qual o aluno irá construir seus fundamentos teóricos e práticos em hardware e componentes eletrônicos assim como, também, com a interface hardware-software, usando desta com o foco inicial no design e artes.

O que é ?

Uma bancada computacional de baixo custo que irá auxiliar o aluno de Engenharia de Computação no entendimento e desenvolvimento de projetos utilizando hardware e interface hardware-software, esta por meio da criação do design de interação. A arquitetura básica da bancada, além do computador para coleta e envio de dados ao hardware em desenvolvimento, será composta por tecnologias livres, utilizando na parte de interação com o hardware base o ambiente Arduíno [3], na parte do design de interação da interface hardware-software o ambiente Processing [4], na simulação, anterior a montagem do circuito, será usado o QUCS [5] para que haja certeza de que o que se espera irá ocorrer. Outros diagramadores de circuitos pesquisados: KLogic [6], XCircuit [7] e Oregano [8]. Programas relacionados a circuitos podem ser encontrados em [1]. O projeto será usado em conjunto com outro em elaboração, que é criar aulas de laboratório de mídias e hardware para que os alunos tenham um melhor entendimento dos conteúdos que serão cobrados posteriormente em outras disciplinas de circuítos e desenvolvam a capacidade de criar sistemas interativos.

Computador

O componente principal da bancada no qual todos os estudos serão realizados tais como simulações, programação do software a ser embarcado no hardware(Arduino) e interação com o hardware(Arduino) a partir de uma interface(Processing). O sistema operacional a ser utilizado será baseado no GNU/Linux afim de que se estimule o aluno ao uso e criação de soluções livres para que haja total entendimento e acesso por parte de outros estudantes ou interessados no assunto.

Arduino

Arduino

Arduino é um protótipo eletrônico open-source que implementa um ambiente de fácil relacionamento entre o hardware e o software para programadores, designers, artistas ou quem quer que esteja interessado em utilizá-lo para algum fim. Com ele é possível capturar eventos em ambientes através de sensores, por meio da porta de entrada de sinais, e também controlar dispositivos eletrônicos de diversos tipos como luzes, motores etc, de um modo simples quando comparado às linguagens usadas que permitem esse tipo de comunicação.

Processing

Processing é uma linguagem de programação e ambiente open-source destinada a produção de artes, não necessariamente precisando de conhecimentos profundos em programação e algoritmos para que se possa dar um primeiro passo significativo no entendimento e domínio dela, assim como também destinada a ensinar os princípios básicos de programação para computadores num contexto visual. O ambiente Processing é uma ferramenta livre de grande valia aos estudantes, designers e entusiastas que têm como obstáculo na criação de algum projeto(arte), elementos que uma suite gráfica dificilmente fornece, como exemplo uma função recursiva (chamada a própria função antes desta terminar, exemplo: fatorial[2] é uma função recursiva).

QUCS - Quite Universal Circuit Simulator

QUCS

QUCS é um diagramador de circuitos open-source fácil de usar e foi escolhido para compor o arcabouço, pelo fato de que permite a simulação fácil de circuitos e terá como finalidade sanar possíveis dúvidas de funcionalidade, antes da construção de um determinado circuito. Ele permite uma quantidade razoável de simulações dentre elas de corrente alternada, contínua e circuitos digitais.

Hardware base

O hardware base para a elaboração de circuitos será composto por componentes eletrônicos tais como resistores, capacitores, diodos etc, um multimetro para a verificação das grandezas reais associadas ao circuito e aos componentes, a captura de dados e a alimentação do hardware será através da porta USB, entrentanto para circuitos sem a necessidade da captura de dados uma fonte de tensão pode ser usada (que pode ser construida a partir de uma fonte ATX de computadores, ver em Links Relacionados) e por fim um protoboard que é uma placa que contém dezenas de pequenas entradas nas quais os componentes eletrônicos são encaixados e o circuito é montado, evitando a necessidade inicial de placas condutora e solda.

Software para criar o layout do projeto

Se o interesse for apenas em construir o layout do projeto, com os componentes, pode-se usar:

  • gEDA - GPL’d suite of electronic design automation [9]

Uma vez montado o circuito no protoboard, todo o esquema então pode ser passado a um programa para que, caso haja interesse, o circuito possa ser construído para a versão definitiva, ou seja, impresso e construído em uma placa condutora. Um software para GNU/Linux encontrado que possibilita o desenho de circuitos para impressão no formato sem componentes:

  • PCB - Printed Circuit Board Layout Tool [10]

Referências Bibliográficas

  1. Nival Nunes de Almeida, D.Sc, Bernardo Severo da Silva Filho, M.Sc. O Desafio do Ensino de Circuitos Elétricos na Formação Básica em Engenharia Elétrica na UERJ. Disponível em: http://www.del.ufms.br/desafio_CE.pdf Acesso em 29 de agosto de 2008
  2. Reestruturação do Ensino de Engenharia - Disponível em: http://www.unicamp.br/prg/reenge/reenge.html#reenge Acesso em 29 de agosto de 2008
  3. Arduino Disponível em: http://www.arduino.cc/ . Acesso em 01 de setembro de 2008.
  4. Processing Disponível em: http://processing.org/ . Acesso em 01 de setembro de 2008.
  5. QUCS - Quite Universal Circuit Simulator Disponível em: http://qucs.sourceforge.net/ . Acesso em 5 de setembro de 2008.
  6. XCircuit Disponível em: http://opencircuitdesign.com/xcircuit/ . Acesso em 15 de setembro de 2008.
  7. KLogic Disponível em: http://pdb.finkproject.org/pdb/package.php/klogic . Acesso em 15 de setembro de 2008.
  8. Oregano Disponível em: http://oregano.gforge.lug.fi.uba.ar/ . Acesso em 26 de setembro de 2008.
  9. gEDA Disponível em: http://www.geda.seul.org/ . Acesso em 26 de setembro de 2008.
  10. PCB Disponível em: http://sourceforge.net/projects/pcb/ . Acesso em 26 de setembro de 2008.

Links Relacionados

  1. Como converter uma fonte ATX em uma fonte de tensão para experimentos http://www.wikihow.com/Convert-a-Computer-ATX-Power-Supply-to-a-Lab-Power-Supply
  2. Phoenix: Computer Interfaced Science Experiences http://www.nsc.res.in/~elab/phoenix/
  3. J. Jayapandian (2006) Embedded control and virtual instrument simplifies laboratory automation. CURRENT SCIENCE, VOL. 90, NO. 6, 25 MARCH 2006. Disponível em http://www.ias.ac.in/currsci/mar252006/765.pdf
  4. Hardware toolkits for physical user interface prototyping - Disponível em http://hci.rwth-aachen.de/toolkits
  5. O Uso de Realidade Aumentada no Ensino de Física Abstract 1 - Disponível em http://www.ckirner.com/download/anais/WRA2005-Anais/WRA2005-1-24.pdf
Ferramentas pessoais