Edital 127/2010 - CPCP - CT
Tabela de conteúdo |
Informações Gerais
- Cargo: Professor de Magistério Superior
- Classe: Adjunto
- Vagas: 03 (três vagas) sendo uma vaga para cada uma das área/sub-áreas abaixo:
- Ciência da Computação/Computação Pervasiva
- Ciência da Computação/Reconhecimento de Padrões e Recuperação de Informações
- Ciência da Computação/Sistemas Colaborativos e Computação Paralela
- Carga Horária: DE (Dedicação Exclusiva)
- Obs.: O regime de trabalho de dedicação exclusiva impede o exercício de outra atividade remunerada, pública ou privada.
- Taxa de inscrição: R$ 183,00 (há a possibilidade de isenção da taxa de inscrição conforme item 2.7 do edital)
- Remuneração bruta inicial: R$ 7.333,67
- Este valor é o que é recebido pela classe Adjunto, nível 1. A remuneração atual está disponível em tabela de remuneração dos servidores públicos federais
- Informações para os candidatos: ver Guia de Sobrevivência
Datas
- Inscrições: 17/10/2010 a 15/11/2010
- Prova escrita: 21 de novembro de 2010
- A prova de Desempenho Didático será realizada em data e hora a serem divulgadas juntamente com o resultado da Prova Escrita e o tema será sorteado com 24 horas de antecedência, sendo único para todos os candidatos, obedecendo-se o critério da ordem alfabética.
Informações
- Informações oficiais e inscrições: http://www.utfpr.edu.br/concursos/campi/ct/cpcp/1272010
Sub-área: Computação Pervasiva
1 - Computação pervasiva
2 - Computação cooperativa
3 - Computação móvel em Computação Pervasiva
4 - Redes ad hoc e de sensores
5 - Computação em nuvem
6 - Ambientes inteligentes para Computação Pervasiva
7 - Segurança em Computação Pervasiva
8 - Protocolos de Comunicação e Redes sem fio usados em Computação Pervasiva
9 - Sistemas embarcados para Computação Pervasiva
10 - Middleware para Computação Pervasiva
Bibliografia Sugerida
A relação a seguir contempla os livros considerados elementares, o que não impede que outros sejam utilizados para a elaboração de questões.
"Pervasive Computing: The Mobile World (Springer Professional Computing)", Uwe Hansmann, Lothar Merk, Martin S. Nicklous, and Thomas Stober ( Aug 5, 2003)
"Fundamentals of Mobile and Pervasive Computing", Frank Adelstein, Sandeep KS Gupta, Golden Richard III, and Loren Schwiebert (Nov 30, 2004) "Advances in Wireless Ad Hoc and Sensor Networks", (Signals and Communication Technology), Maggie Xiaoyan Cheng and Deying Li (Nov 2, 2010)
"Ad Hoc Wireless Networks: Architectures and Protocols", C. Siva Ram Murthy and B.S. Manoj (Jun 3, 2004)
"Computer Networking: A Top-Down Approach (5th Edition)", James F. Kurose and Keith W. Ross (Mar 31, 2009)
M. Weiser, "The computer for the 21 st century", ACM SIGMOBILE Móbile Computing and Communications Review, Volume 3 , Issue 3, 1999.
M. Satyanarayanan, "Pervasive Computing: Vision and Challenges", IEEE Personal Communications, vol.8, 2001.
Sub-área: Reconhecimento de Padrões e Recuperação de Informações
1. Reconhecimento de padrões: características, vetores de características e classificadores. Reconhecimento supervisionado versus não-supervisionado.
2. Classificadores baseados na teoria de decisão de Bayes e reconhecimento estatístico de padrões;
3. Classificadores lineares: princípios, classificadores (LSM, SVM, etc) e aplicações.
4. Classificadores não-lineares: princípios, classificadores (redes neurais, árvores de decisão, etc) e aplicações.
5. Seleção de características: detecção de outliers, seleção baseada em hipóteses estatísticas, medidas de separabilidade de classes, geração ótima de características.
6. Agrupamento (Clustering): conceitos básicos, algoritmos seqüenciais, algoritmos hierárquicos e esquemas baseados em funções de otimização.
7. Aprendizagem de máquina independente de algoritmos: aspectos gerais, bias/variância, re-amostragem, estimação e comparação de classificadores, combinação de classificadores.
8. Sistemas para recuperação de informações; modelos booleano, vetorial e probabilista.
9. Propriedades de coleções de documentos textuais; pré-processamento; documentos não-estruturados e semi-estruturados.
10. Recuperação de informações e aprendizagem de máquina; funcionamento de máquinas de busca. Web e p2p querying.
Bibliografia Sugerida
A relação a seguir contempla os livros considerados elementares, o que não impede que outros sejam utilizados para a elaboração de questões.
R. O. Duda; P. E. Hart; D. G. Stork. Pattern Classification (2nd. Ed.). John Wiley and Sons Inc., 2001.
R. Schalkoff. Pattern Recognition: Statistical, Approaches. John Wiley and Sons, 1992. Structural and S. Theodoridis, K. Koutroumbas. Pattern Recognition (4th Ed.). Academic Press, 2008.
C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics, Springer, 2007.
T. Mitchell. Machine Learning. McGraw-Hill, 1997.
J. Han; M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
I.H. Witten; E. Frank. Data Mining: Practical Machine Learning Tools and Techniques with JAVA Implementations. Morgan Kaufmann, 2000.
S. Haykin. Neural Networks and Learning Machines (3rd. Ed.) Prentice Hall, 2008.
C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1996.
Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison-Wesley, 1999.
Ian H. Witten, Alistair Moffat and Timothy C. Bell. Managing Gigabytes: Compressing and Indexing Documents and Images (2nd. Ed.). Van Nostrand Reinhold, 1999.
Karen Sparck-Jones and Peter Willett (Eds.) Readings in Information Retrieval. Morgan Kaufmann, 1997.