Apropriação em Bancada Computacional (ABaCo)

De Wiki DAINF
Edição feita às 16h54min de 30 de maio de 2009 por Solanoalves (disc | contribs)

Tabela de conteúdo

Projeto Apropriação em Bancada Computacional (ABaCo)

Introdução

Um dos entraves enfrentados pelos professores e estudantes das áreas de Engenharia que têm como disciplina eletricidade, é o ensino e entendimento, este por parte dos alunos, de circuitos elétricos. Como cita [1] há uma dificuldade na construção da ponte que liga o embasamento teórico, este adquirido desde as disciplinas básicas tais como física e matemática, e as disciplinas que envolvem a prática em laboratório, o que faz com que o aproveitamento esperado seja prejudicado.

O foco deste projeto é a criação de um arcabouço para auxiliar no entendimento do aluno para com as aulas de laboratório e a familiarização com circuitos elétricos. Um dos pontos-chave do projeto é a importância do baixo custo na construção do arcabouço, uma vez que toda a arquitetura , a princípio almejada, segue a filosofia livre.

O diagrama da página anterior ilustra de forma ampla as ferramentas livres mais utilizadas para se trabalhar com eletrônica, entretanto o projeto focará apenas em algumas de modo a não estender o conteúdo do manual, deixando as outras como forma de auxílio no caso de uma necessidade.

O que é

Em termos práticos o projeto é uma bancada computacional de baixo custo que irá auxiliar, a quem interessar, no entendimento e desenvolvimento de projetos utilizando hardware e interface hardware-software. A arquitetura básica da bancada, além do computador para coleta e envio de dados ao hardware em desenvolvimento, será composta por tecnologias livres, utilizando na parte de interação com o hardware base o ambiente de programação Arduíno [2] e na simulação, anterior a montagem do circuito, será usado o QUCS [3] para que haja certeza de que o que se espera irá ocorrer. Outros simuladores de circuitos pesquisados: KLogic [4] e XCircuit [5].

Programas relacionados a circuitos podem ser encontrados em opencollector.org. O projeto ABaCo será usado em conjunto com outro em elaboração, que é criar aulas de laboratório de mídias e hardware para que os alunos tenham um melhor entendimento dos conteúdos que serão cobrados posteriormente em outras disciplinas de circuítos e desenvolvam a capacidade de criar sistemas interativos.

Computador

O componente da bancada no qual todos os estudos serão realizados tais como simulações, programação do software a ser embarcado no hardware(Arduino) quando necessário, a partir de uma interface(Arduino). O sistema operacional a ser utilizado será baseado no GNU/Linux afim de que se estimule o aluno ao uso e criação de soluções livres para que haja total entendimento e acesso no projeto em desenvolvimento ou já desenvolvido por parte de outros estudantes ou interessados no assunto.

Arduino

Arduino é um protótipo eletrônico open-source que implementa um ambiente de fácil relacionamento entre o hardware e o software para programadores, designers, artistas ou quem quer que esteja interessado em utilizá-lo para algum fim. Com ele é possível capturar eventos em ambientes através de sensores, não inclusos, por meio da porta de entrada de sinais, e também controlar dispositivos eletrônicos de diversos tipos como luzes, motores et cetera, de um modo simples quando comparado às linguagens usadas que permitem esse tipo de comunicação. O Freeduino ou similares ao Arduino pode ser utilizado.

Arduino.jpg

O Arduino tem três regiões principais que estão em torno de um quadrado com bordas vermelhas na imagem acima.

  1. No canto esquerdo da imagem há duas portas e um pino (jumper) selecionável que diz se a alimentação do arduino será via USB ou por uma fonte externa ou bateria de 9 Volts.
  2. No topo da imagem há 16 portas sendo que os pinos de 0 a 13 são usados pra entrada e saída digital. Desses 13 pinos, os pinos rotulados 0(RX, Recebe) e 1(TX, Transmite) podem ser usados para comunicação serial, os pinos 3,5,6,9,10 e 11 suportam pwm (Pulse-width modulation) em que é possível especificar o tempo que o sinal ficará ligado em um periodo, a porta GND(Ground) é o terra do circuito e a porta AREF é a referência de entrada para as entradas analógicas, ou seja, quando a tensão lida é igual a tensão aplicada em AREF, então 1023 é retornado, caso contrario um valor proporcional de 0 a 1023 é retornado. O valor máximo aplicado na porta AREF deve ser de 5 volts, entretanto esse é o valor padrão considerado como 1023 nas leituras analógicas, logo o uso de AREF deve-se a necessidade de leitura de tensões máximas menores que 5 volts.
  3. Na base da imagem há 12 portas sendo 6 rotuladas de 0 a 5 para a entrada analógica de tensão, sendo a máxima 5 volts; na esquerda há 6 portas rotuladas da esquerda para a direita como porta RESET usada para resetar o arduino quando aplicado o terra sobre ela, a porta 3V3 que fornece 3.3 Volts com corrente máxima de 50mA, a porta 5V que fornece 5 volts de tensão, a porta GND que é ligada ao terra do circuito e a porta Vin que também fornece 5 Volts quando alimentado por USB ou a tensão da fonte de tensão ou da bateria quando alimentado por estas.

O botão na região central direita do arduino serve para resetá-lo.

Ambiente de programação Arduino

O ambiente de programação Arduíno é baseado na IDE do processing e a linguagem de programação do arduino é baseada no Wiring. Para os programadores de C/C++ e java não há diferenças significativas na sintaxe.

Fonte de alimentação

A fonte de alimentação será construída de modo que tenha saídas padrões com relação aos componentes avançados que podem vir a ser usados, tais como transistores, amplificadores operacionais entre outros. A fonte precisa ser construída por uma pessoa experiente, utilizando o circuito que for conveniente de modo que apenas saiam as tensões +5V, -5V, +12V, -12V e terra(GND-Ground).

QUCS (Quite Universal Circuit Simulator)

QUCS é um diagramador de circuitos open-source fácil de usar e foi escolhido para compor o arcabouço, pelo fato de que permite a simulação fácil de circuitos e terá como finalidade sanar possíveis dúvidas de funcionalidade, antes da construção de um determinado circuito. Ele permite uma quantidade razoável de simulações dentre elas de corrente alternada, contínua e circuitos digitais.

Hardware Base

O hardware base para a elaboração de circuitos será composto por resistores, um multimetro para a verificação das grandezas reais associadas ao circuito e aos componentes. A captura de dados e a alimentação do hardware será através da porta USB utilizando o Arduino, entrentanto para circuitos sem a necessidade da captura de dados uma fonte de tensão pode ser usada e por fim um protoboard, ou matriz de contatos, que é uma placa que contém dezenas de pequenas entradas nas quais os componentes eletrônicos são encaixados e o circuito é montado, evitando a necessidade inicial de placas condutoras e soldagem.

Leitura de Resistores

Cada resistor tem uma identificação única que o caracteriza, ou seja, que informa a sua resistência. São três anéis coloridos em que cada cor representa um número e a partir da combinação se tem então a resistência.

Geralmente os resistores possuem quatro faixas sendo que a última faixa a ser lida é dourada ou prata, ou seja, a orientação que deve-se seguir é com base na posição da faixa dourada ou prata. A faixa vermelha representa que o resistor tem um erro de 1%, a dourada um erro de 5% e a prata 10%. A leitura será explicada em base ao resistor de 5%.

Posicionando a faixa de erro para a direita, da esquerda para a direita a primeira faixa representa o primeiro digito, a segunda faixa o segundo digito e a terceira faixa o multiplicador dos dois primeiros. A tabela abaixo relaciona as cores com os valores a serem associados.

Resistores.png

Ferramentas pessoais