Matemática Discreta

De Wiki DAINF
(Diferença entre revisões)
(Algoritmo de Busca de Articulação)
(Links para oferecimentos da disciplina em outras universidades)
Linha 40: Linha 40:
 
* [http://www.inf.ufpr.br/andre/Disciplinas/BSc/CI065-2009-2/ Algoritmos e teoria dos grafos (2009.2) - Prof. André Guedes (UFPR)]
 
* [http://www.inf.ufpr.br/andre/Disciplinas/BSc/CI065-2009-2/ Algoritmos e teoria dos grafos (2009.2) - Prof. André Guedes (UFPR)]
 
* [http://www.professeurs.polymtl.ca/michel.gagnon/Disciplinas/Bac/Grafos/index_grafos.html Algoritmos e teoria dos grafos - Prof. Michel Gagnon (UFPR)]
 
* [http://www.professeurs.polymtl.ca/michel.gagnon/Disciplinas/Bac/Grafos/index_grafos.html Algoritmos e teoria dos grafos - Prof. Michel Gagnon (UFPR)]
 +
* [http://www.csie.ntu.edu.tw/~pangfeng/ACP2004/documents/ Advanced Computer Programming (ver slides sobre Graph Algoritms)]
  
 
== Plano de Ensino ==
 
== Plano de Ensino ==

Edição de 17h01min de 3 de novembro de 2009

Tabela de conteúdo

Professores Responsáveis

Oferecimentos Anteriores na UTFPR

Material do prof. Ricardo Luders

Links para oferecimentos da disciplina em outras universidades

Plano de Ensino

Objetivo

Capacitar o aluno a compreender os aspectos formais da Ciência da Computação, apresentando as principais estruturas matemáticas discretas utilizadas, assim como desenvolver seu raciocínio abstrato e relacionar este conhecimento com sua capacidade de desenvolver e caracterizar formalmente diversos algoritmos.

Ementa

Métodos de Prova, Indução e Recursão; Conjuntos e Análise Combinatória; Relações e Funções; Grafos, Árvores e Algoritmos; Estruturas Algébricas; Álgebra Booleana e Circuitos Lógicos.

Conteúdo

ITEM
EMENTA
CONTEÚDO
1
Métodos de Prova, Indução e Recursão Técnicas de demonstração matemática: direta, contraposição, absurdo e indução.

Seqüências definidas por recorrência. Solução de relações de recorrência. Algoritmos recursivos.

2
Conjuntos e Análise Combinatória Conjuntos. Operações binárias e unárias. Operações com conjuntos. Cardinalidade.

Princípios da multiplicação e adição. Princípio da inclusão e exclusão. Princípio das casas de pombos.

Permutações e Combinações.

3
Relações e Funções Relações binárias. Autorrelação e propriedades reflexiva, simétrica, anti-simétrica e transitiva. Fecho de uma relação.

Relações de ordem parcial e de equivalência.

Funções.

4
Grafos, Árvores e Algoritmos Grafos e suas representações. Terminologia. Isomorfismo. Grafos planares. Matriz de adjacência.

Árvores, propriedades e aplicações.

Acessibilidade. Algoritmo de Warshall.

Caminho de Euler e circuito Hamiltoniano.

Caminho mínimo. Árvore geradora mínima. Algoritmos de Dijkstra e Prim.

Busca em nível e em profundidade.

Pontos de articulação.

5
Estruturas Algébricas Propriedades das operações binárias.

Grupóides, semigrupos, monóides e grupos.

Homomorfismo.

6
Álgebra Booleana

e Circuitos Lógicos

Circuitos lógicos.

Propriedades da Álgebra de Boole.

Funções e expressões booleanas. Formas normais e expressões booleanas equivalentes.

Minimização de expressões booleanas. Mapas de Karnaugh

Referências

Referências Básicas

GERSTING, Judith L. Fundamentos Matemáticos para a Ciência da Computação, 5ª Edição, Rio de Janeiro: LTC, 2004.

Referências Complementares

ROSEN, Kenneth H. Discrete Mathematics and Its Applications, 6th Edition, New York: McGraw-Hill, 2006.

ROSEN, Kenneth H. Student's Solutions Guide to accompany Discrete Mathematics and Its Applications, 6th Edition, New York: McGraw-Hill, 2006.

LIPSHUTZ, S.; LIPSON, M. Teoria e Problemas de Matemática Discreta, Coleção Schaum, 2ª Edição, Rio de Janeiro: Bookman, 2004.

LIPSHUTZ, S. 2000 Solved Problems in Discrete Mathematics, Coleção Schaum, 1ª Edição, McGraw-Hill, 1991.

MENEZES, Paulo B. Matemática Discreta para Computação e Informática, 2ª Edição, Porto Alegre: Editora Sagra Luzzatto, 2005.

ROSS, K. A.; WRIGHT, C. R. Discrete Mathematics, 5th Edition, Prentice-Hall, 2002.

EPP, S. S. Discrete Mathematics with Applications, 3ª Edição, Brooks Cole, 2003.

EPP, S. S. Solutions Manual for Epp's Discrete Mathematics with Applications, 3ª Edição, Brooks Cole, 2004.

MELLO, M. P.; SANTOS, J. P.; MURARI, I. T. C. Introdução à Análise Combinatória, 1ª Edição, Rio de Janeiro: Ciência Moderna, 2008.

SANTOS, J. P.; ESTRADA, E. Problemas Resolvidos de Combinatória, 1ª Edição, Rio de Janeiro: Ciência Moderna, 2007.

BOAVENTURA NETTO, PAULO O. Grafos – Teoria, Modelos, Algoritmos, 4ª Edição, Edgard Blücher, 2006.

NICOLETTI, M. C.; HRUSCHKA JR.. E. R. Fundamentos da Teoria dos Grafos para Computação, 1ª Edição, Editora da UFSCar, 2007.

IEZZI, GELSON; DOMINGUES, H. H. Álgebra Moderna, 4ª Edição, Atual Editora, 2003.

SCHEINERMAN, Edward. Matemática Discreta: Uma Introdução. São Paulo: Thomson, 2003. Página do livro na editora:http://www.thomsonlearning.com.br/detalheLivro.do?id=102629#

Materiais Complementares

Apostilas

Animações de Algoritmos

Prim

Dijkstra

Percurso em Grafos

Implementações de Algoritmos em Lua

Diversos


Páginas na Internet

Grafos Eulerianos e Hamiltonianos

Algoritmo de Busca de Articulação

Ferramentas pessoais